Warning! The directory is not yet complete and will be amended until the beginning of the term.
250096 VO Analysis on manifolds (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Monday 26.07.2021
- Tuesday 27.07.2021
- Thursday 29.07.2021
- Thursday 14.10.2021
- Monday 11.04.2022
- Tuesday 07.06.2022
- Thursday 23.06.2022
Lecturers
Classes (iCal) - next class is marked with N
-
Monday
01.03.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
03.03.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
08.03.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
10.03.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
15.03.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
17.03.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
22.03.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
24.03.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
12.04.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
14.04.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
19.04.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
21.04.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
26.04.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
28.04.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
03.05.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
05.05.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
10.05.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
12.05.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
17.05.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
19.05.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
26.05.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
31.05.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
02.06.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
07.06.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
09.06.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
14.06.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
16.06.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
21.06.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
23.06.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
28.06.
09:45 - 11:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
30.06.
09:45 - 11:15
Digital
Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course is in the core modules for the area "geometry and topology" of the master program and provides the basis for large parts of this area. It discusses the basic theory of (abstract) smooth manifolds and analysis thereon, which is the foundation of differential geometry. We will discuss the fundamental geometric objects (vector fields, tensor fields, differential forms) available on smooth manifolds and the basic operations dealing with such objects. We will also deal with integration on manifolds and Stokes theorem in the setting of manifolds with boundary. On the way we will discuss several applications of the techniques in areas between analysis and geometry, for example to Riemannian and symplectic geometry.
Assessment and permitted materials
Oral exam after the end of the course.
Minimum requirements and assessment criteria
Good knowledge of the central contents of the course as well as the ability to apply them in examples. The level of the course will follow the usual standards for master courses.
Examination topics
The contents of the course.
Reading list
Lecture notes for the course will be available online via http://www.mat.univie.ac.at/~cap/lectnotes.html and via moodle in due time. Depending on the way the course will be organized, I can provide additional material on moodle in the form of "informal remarks".
Examples for further literature:
J.M. Lee: "Introduction to smooth manifolds" (second edition), Graduate Texts in Mathematics 218, Springer 2013.
P.W. Michor: "Topics in Differential Geometry", Graduate Studies in Mathematics 93, Amer. Math. Soc. 2008.
Examples for further literature:
J.M. Lee: "Introduction to smooth manifolds" (second edition), Graduate Texts in Mathematics 218, Springer 2013.
P.W. Michor: "Topics in Differential Geometry", Graduate Studies in Mathematics 93, Amer. Math. Soc. 2008.
Association in the course directory
MGED
Last modified: Fr 12.05.2023 00:21