Warning! The directory is not yet complete and will be amended until the beginning of the term.
250097 VO Homogeneous Dynamics (2022S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.03. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.04. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.04. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.05. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.06. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Understanding and working knowledge of the material discussed in the lectures.
Examination topics
All the material covered in the lectures is subject of examination. The student should also be able to solve simple exercises, which will be assigned during the lectures.
Reading list
Lectures notes will be made available to the participants.
Additional useful material is:
- M. Einsiedler, T. Ward. Ergodic Theory with a view towards Number Theory. Graduate Texts in Mathematics 259, Springer, London, 2011.
- J.M. Lee Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218, Springer, New York, NY, 2012.
- M.B. Bekka, M. Mayer. Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces. London Mathematical Society Lecture Note Series 269, Cambridge University Press, Cambridge, 2000.
Additional useful material is:
- M. Einsiedler, T. Ward. Ergodic Theory with a view towards Number Theory. Graduate Texts in Mathematics 259, Springer, London, 2011.
- J.M. Lee Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218, Springer, New York, NY, 2012.
- M.B. Bekka, M. Mayer. Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces. London Mathematical Society Lecture Note Series 269, Cambridge University Press, Cambridge, 2000.
Association in the course directory
MSTV
Last modified: Th 26.10.2023 00:23
No prior knowledge in Lie group theory is assumed and all the relevant objects will be introduced during the lectures. However, some familiarity with basic notions in ergodic theory is recommended.
Lecture notes will be made available during the course.