Warning! The directory is not yet complete and will be amended until the beginning of the term.
250097 VO Introduction to Mathematical logic (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 30.01.2025 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 30.01.2025 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- N Monday 03.03.2025 08:00 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Friday 11.04.2025 13:15 - 16:30
- Tuesday 01.07.2025
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 03.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 08.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 10.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 15.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 17.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 22.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 24.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 29.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 31.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 05.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 07.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 12.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 14.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 19.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 21.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 26.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 28.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 03.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 05.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 10.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 12.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 17.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 07.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 09.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 14.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 16.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 21.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 23.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 28.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
This class is an introduction to mathematical logic. The primary goal is to take a deep dive into first-order logic by unraveling the connections between its syntax and its semantics. Some highlights will be: Gödel's Completeness Theorem and the Compactness Theorem for first-order logic; the Back and Forth method and Ehrenfeucht-Fraïssé games; Elimination of Quantifiers; Tarski's Theorem on the non-definability of truth; and Gödel's Incompleteness Theorems. In the process we will cover some basics of model theory, recursion theory and set theory and discuss applications to algebra, combinatorics, and other areas of mathematics.
Assessment and permitted materials
There will be a final exam during the last lecture. A couple more exam dates will be announced later, to take place during the summer semester of 2024.
Minimum requirements and assessment criteria
Pass the final exam.
Examination topics
For the final exam you will need to know the material covered in the lecture and the discussion sessions, and be able to apply it. I will regularly assign problems that will help you deepen your understanding of the material. You should expect similar problems to appear on the final.
Reading list
In terms of which topics we will cover and in what order, we will closely follow the books:(1) "A first journey through logic" by M. Hils and F. Loeser
https://webusers.imj-prg.fr/~francois.loeser/stml089.pdfand
(2) "An Invitation to Mathematical Logic" by D. MarkerAnother good source is Lou van den Dries' "Mathematical Logic Lecture Notes" which can be found, for example, here: https://www.mat.univie.ac.at/~panagiotopoulos/2019.pdf
https://webusers.imj-prg.fr/~francois.loeser/stml089.pdfand
(2) "An Invitation to Mathematical Logic" by D. MarkerAnother good source is Lou van den Dries' "Mathematical Logic Lecture Notes" which can be found, for example, here: https://www.mat.univie.ac.at/~panagiotopoulos/2019.pdf
Association in the course directory
MLOL
Last modified: Th 30.01.2025 12:46