Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250098 VO Higher Analysis for SSTA (2005W)

Higher Analysis for SSTA

0.00 ECTS (4.00 SWS), SPL 25 - Mathematik

erstmals am 03.10.2005

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 03.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 05.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 10.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 12.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 17.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 19.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 24.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 31.10. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 07.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 09.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 14.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 16.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 21.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 23.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 28.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 30.11. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 05.12. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 07.12. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 12.12. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 14.12. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 09.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 11.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 16.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 18.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 23.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Wednesday 25.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
  • Monday 30.01. 10:15 - 11:45 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum

Information

Aims, contents and method of the course

From the anouncement of this lecture by Prof. Reichel (1945 - 2002) in
1999/2000 (winter term) (easiliy modified and supplemented):

"This lecture contains two parts: complex analysis and ordinary differential
equations. For these fundamental fields of mathematics I will discuss their
basic ideas and I will also present the substantial concepts of them.
The attained results belong to the general knowledge of each mathematician.
I think that these concepts and ideas will be essential if you want to teach
mathematics, anymore, although the concrete contents of the lecture are not
thought at the Gymnasium (except for complex numbers and some simple
differential equations).

Complex analysis is also called "theory of functions" because it is the
proper home of functions. You cannot understand real functions really
without insights in complex analysis.

Differential equations are one of the classical connections between
mathematics and its classical applications."

I have nothing to add. I will endeavor to give cross hints many times to
basic real analysis as it is known from the first part of mathematical
study.
This is for the reason to refresh and animate your mathematical knowledge.
(Therefore factual knowledge is necessary which is often abused today -
don't leave me in the lurch! -, it is often ignored in discussions about
this that connecting knowledge demands the existing of knots of knowledge,
facts, which
principally can be connected afterwards.) Direct references as regards
content to school mathematics hardly exist (see above!), but the manner of
constructing the lecture and the conclusions which are presented there may
support the student teachers to understand how the science "mathematics"
works. And this insight is a necessary condition for good practice, because
the subject "mathematics" can be represented capably only in this way to the
"outsiders" (i. e. pupils).

Assessment and permitted materials

Minimum requirements and assessment criteria

Understanding of basic ideas concerning complex analysis
and ordinary differential equations and being able to deal with elementary
methods belonging to these two fields.

Examination topics

Lecture given in the classical way

Reading list

Funktionentheorie:
Fischer, W. und Lieb, I.: Funktionentheorie. vieweg, Braunschweig/Wiesbaden
1994 (7., verbesserte Auflage).
Freitag, E. und Busam, R.: Funktionentheorie 1. Springer, Berlin u. a. 2000
(dritte, neu bearbeitete und erweiterte Auflage).
Jänich, K.: Funktionentheorie. Eine Einführung. Springer, Berlin u. a. 1999
(fünfte Auflage).
Remmert, R. und Schumacher, G.: Funktionentheorie 1. Springer, Berlin u. a.
2002 (fünfte, neu bearbeitete Auflage).
Gewöhnliche Differentialgleichungen:
Arnold, V. I.: Gewöhnliche Differentialgleichungen. Springer, Berlin u. a.
2001 (zweite Auflage).
Boyce, W. E. und DiPrima, R. C.: Gewöhnliche Differentialgleichungen.
Einführung · Aufgaben · Lösungen. Spektrum Akademischer Verlag, Heidelberg
u. a. 1995.
Walter, W.: Gewöhnliche Differentialgleichungen. Springer, Berlin u. a. 2000
(siebente, neu bearbeitete und erweiterte Auflage).

Association in the course directory

Last modified: Sa 02.04.2022 00:24