Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250098 SE Seminar (Differential Geometry) (2017S)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

First meeting and registration: 6.3. 9:45. The intended time frame for regular sessions is 10:15-11:45.

  • Monday 06.03. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.03. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.03. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.04. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.04. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.05. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.05. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.05. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.05. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.06. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.06. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.06. 09:45 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Model spaces in semi-Riemannian geometry.

The goal of this seminar is an in-depth study of a number of concrete model spaces in semi-Riemannian geometry. These include hyperquadrics, space-forms (spaces of constant curvature), warped products, and, time permitting, geometries relevant to General Relativity (Schwarzschild, Robertson-Walker, de Sitter, ...). The required methods (semi-Riemannian coverings, isometry groups, etc.) will be covered as the need arises.

The course presupposes basic knowledge on (Semi-)Riemannian geometry, approximately the material covered e.g. in the course 250070 VO Riemannian geometry of the previous fall term, see http://www.mat.univie.ac.at/~stein/teaching/SoSem16/dg.html#rg Also this seminar can be seen as an extension and practical consolidation of the material presented in the above course. In particular it is well suited for (mildly advanced) students of the "geometry and topology" area of studies according to the master curriculum mathematics.

Assessment and permitted materials

Giving a lecture and actively participating in the discussions on the contributions of the other participants.

Minimum requirements and assessment criteria

Examination topics

Reading list

Barrett O'Neill, "Semi-Riemannnian Geometry (With Applications to Relativity)" (Volume 103 of Pure and Applied Mathematics, Academic Press, San Diego, 1983).

Association in the course directory

MGES

Last modified: Mo 07.09.2020 15:40