Warning! The directory is not yet complete and will be amended until the beginning of the term.
250098 VO Number theory (2019S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Thursday 27.06.2019 11:30 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 15.07.2019 16:45 - 18:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 27.09.2019 15:30 - 17:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 01.10.2019
- Monday 21.10.2019
- Friday 29.11.2019 16:45 - 18:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 10.01.2020 15:00 - 16:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 18.11.2022
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 06.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 13.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 20.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 27.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 03.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 10.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 08.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 29.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 05.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 12.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 19.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 26.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Introduction into basic concepts of elementary Number Theory
Examination topics
For the exam you will have to know (as usual) definitions, mathematical tools and results (including technical constructions, theorems, etc.), proofs and contexts (including motivation of the material, explanation of principles). In addition, the mastery of the subject will be checked by posing suitable problems.
Reading list
Markus Fulmek, Skriptum Zahlentheorie
Association in the course directory
ZTH; UFMAMA02
Last modified: Tu 22.11.2022 00:24
http://www.mat.univie.ac.at/~schlosse/courses/ZT/ZT.html