Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250098 VO Number theory (2019S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 06.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 13.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 20.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 27.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 03.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 10.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 08.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 15.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 22.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 29.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 05.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 12.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 19.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 26.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

The following material will be covered: divisibility in the ring of integers, congruences and residue class rings, p-adic number systems, quadratic remainders and quadratic reciprocity law, continued fractions. Further information at
http://www.mat.univie.ac.at/~schlosse/courses/ZT/ZT.html

Assessment and permitted materials

Written exam

Minimum requirements and assessment criteria

Introduction into basic concepts of elementary Number Theory

Examination topics

For the exam you will have to know (as usual) definitions, mathematical tools and results (including technical constructions, theorems, etc.), proofs and contexts (including motivation of the material, explanation of principles). In addition, the mastery of the subject will be checked by posing suitable problems.

Reading list

Markus Fulmek, Skriptum Zahlentheorie

Association in the course directory

ZTH; UFMAMA02

Last modified: Tu 22.11.2022 00:24