Warning! The directory is not yet complete and will be amended until the beginning of the term.
250099 VO Advanced functional analysis (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Friday 16.06.2023
- Thursday 29.06.2023
- Tuesday 11.07.2023
- Wednesday 12.07.2023
- Thursday 13.07.2023
- Friday 14.07.2023
- Tuesday 01.08.2023
- Wednesday 09.08.2023
- Thursday 10.08.2023
- Monday 28.08.2023
- Tuesday 12.09.2023
- Friday 15.09.2023
- Friday 22.09.2023
- Monday 20.11.2023
- Monday 20.11.2023
- Thursday 22.02.2024
- Monday 04.03.2024
- Thursday 07.03.2024
- Thursday 07.03.2024
- Thursday 28.03.2024
- Tuesday 25.06.2024
- Friday 28.06.2024
- Monday 01.07.2024
- Tuesday 10.09.2024
- Monday 30.09.2024
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 08.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 29.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 31.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 19.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 21.04. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 26.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 28.04. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 03.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 05.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 10.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 17.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 24.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 26.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 31.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 02.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 07.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 09.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 14.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 21.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 23.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 28.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 30.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
The (larger) first part of the lecture course will be devoted to an introduction to spectral theory for bounded and unbounded self-adjoint operators. The second part will give a brief introduction to locally convex vector spaces, with emphasis on weak and weak* topologies and an outlook on the theory of distributions. Detailed lecture notes are available at https://www.mat.univie.ac.at/~gue/material.htmlFor the accompanying problem session class (PS ... Proseminar), see https://ufind.univie.ac.at/de/course.html?lv=250121&semester=2023S
Assessment and permitted materials
Oral exam. (In presence or digital.) Scheduling for such (by e-mail) will be available up to one year after the end of this lecture course.
Minimum requirements and assessment criteria
For a successful exam, a thorough understanding of the definitions, results, and proofs has to be shown in detailed answers to questions. (For the discussion of proofs, students may draw on their own notes or the lecture notes.)
Examination topics
Sections 1-7 from the lecture notes https://www.mat.univie.ac.at/~gue/lehre/23AFA/AFA.pdf
Reading list
Detailed lecture notes, including a bibliography, are available at https://www.mat.univie.ac.at/~gue/material.html
Association in the course directory
MANF
Last modified: Tu 01.10.2024 00:16