Warning! The directory is not yet complete and will be amended until the beginning of the term.
250100 VO Axiomatic set theory 1 (2019S)
Labels
In the short term, the courses could take place at the Josephinum. If you have any questions, please contact your lecturer.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The lecture will be held Fridays from 12:15 to 15:15, except the very first and last three lectures which will end at 14:30.
- Friday 01.03. 12:15 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 08.03. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 15.03. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 22.03. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 29.03. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 05.04. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 12.04. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 03.05. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 10.05. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 31.05. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 07.06. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 14.06. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Friday 21.06. 11:30 - 14:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
Information
Aims, contents and method of the course
This is an introductory course to set theory. It covers cardinal and ordinal arithmetic, Goedel's construtible universe, Martin's axioms, some infinitary combinatorics and gives an introduction to the method of forcing. In particular, we will establish the independence of the Continuum Hypothesis from the usual axioms of set theory.
Assessment and permitted materials
Class participation (25%) and final oral examination (75%).
Minimum requirements and assessment criteria
Examination topics
Material covered during the semester.
Reading list
1) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
2) L. Halbeisen, "Combinatorial se theory. With a gentle intorduction to forcing". Springer Monogrpahs in Mathematics. Springer, London, 2012. xvi+453 pp.
3) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
2) L. Halbeisen, "Combinatorial se theory. With a gentle intorduction to forcing". Springer Monogrpahs in Mathematics. Springer, London, 2012. xvi+453 pp.
3) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
Association in the course directory
MLOM
Last modified: Fr 18.11.2022 00:23