Warning! The directory is not yet complete and will be amended until the beginning of the term.
250100 VO Axiomatic set theory 1 (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The lectures will be digital.
To obtain the Zoom link for the lectures, please visit the Moodle website of the course or write to <vera.fischer@univie.ac.at>.- Tuesday 02.03. 08:45 - 10:15 Digital
- Thursday 04.03. 08:45 - 10:15 Digital
- Tuesday 09.03. 08:45 - 10:15 Digital
- Thursday 11.03. 08:45 - 10:15 Digital
- Tuesday 16.03. 08:45 - 10:15 Digital
- Thursday 18.03. 08:45 - 10:15 Digital
- Tuesday 23.03. 08:45 - 10:15 Digital
- Thursday 25.03. 08:45 - 10:15 Digital
- Tuesday 13.04. 08:45 - 10:15 Digital
- Thursday 15.04. 08:45 - 10:15 Digital
- Tuesday 20.04. 08:45 - 10:15 Digital
- Thursday 22.04. 08:45 - 10:15 Digital
- Tuesday 27.04. 08:45 - 10:15 Digital
- Thursday 29.04. 08:45 - 10:15 Digital
- Tuesday 04.05. 08:45 - 10:15 Digital
- Thursday 06.05. 08:45 - 10:15 Digital
- Tuesday 11.05. 08:45 - 10:15 Digital
- Tuesday 18.05. 08:45 - 10:15 Digital
- Thursday 20.05. 08:45 - 10:15 Digital
- Thursday 27.05. 08:45 - 10:15 Digital
- Tuesday 01.06. 08:45 - 10:15 Digital
- Tuesday 08.06. 08:45 - 10:15 Digital
- Thursday 10.06. 08:45 - 10:15 Digital
- Tuesday 15.06. 08:45 - 10:15 Digital
- Thursday 17.06. 08:45 - 10:15 Digital
- Tuesday 22.06. 08:45 - 10:15 Digital
- Thursday 24.06. 08:45 - 10:15 Digital
- Tuesday 29.06. 08:45 - 10:15 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
A final exam or regular class participation in the form of assignments.
Minimum requirements and assessment criteria
Examination topics
The material covered in the lectures.
Reading list
1) Lecture notes of the course.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
Association in the course directory
MLOM
Last modified: Fr 12.05.2023 00:21
Gödel's constructible universe, Martin's axioms, some infinitary combinatorics and the method of forcing. In particular, we will establish the independence of the Continuum Hypothesis from the usual axioms of set theory.