Warning! The directory is not yet complete and will be amended until the beginning of the term.
250100 VO Axiomatic set theory 1 (2022S)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 03.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 08.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 10.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 15.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 17.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 22.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 24.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 29.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 31.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 05.04. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 07.04. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 26.04. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 28.04. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 03.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 05.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 10.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 12.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 17.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 19.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 24.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 31.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 02.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 09.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 14.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 21.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 23.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 28.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 30.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
Assessment and permitted materials
Regular class participation in the form of assignments or final exam.
Minimum requirements and assessment criteria
Examination topics
The material covered in the lectures.
Reading list
1) Lecture notes of the course.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
Association in the course directory
MLOM
Last modified: Th 18.08.2022 17:28
Gödel's constructible universe, Martin's axioms, some infinitary combinatorics and the method of forcing. In particular, we will establish the independence of the Continuum Hypothesis from the usual axioms of set theory.