Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250108 VO Commutative algebra (2018W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 08.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 15.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 22.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 29.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 05.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 12.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 19.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 26.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 03.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 10.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 07.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 14.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 21.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 28.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

The course is a basic introduction to commutative algebra, the theory of commutative rings, ideals and modules. Commutative algebra is a necessary background for algebraic geometry and number theory. In other branches of mathematics, the language of commutative algebra is used quite often. Moreover, commutative algebra is very good in studying solutions of systems of polynomial equations algorithmically. We will sometimes use computer calculations to illustrate abstract theory.

This course is complemented by the course on algebraic geometry by H. Hauser.

The lectures are complemented by an exercise class (Proseminar)

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Written or oral exam

Reading list

"Introduction To Commutative Algebra" by Atiyah and Macdonald is short, and probably the most well-known book on the subject with lots of exercises.

"Commutative Algebra: With a View Toward Algebraic Geometry" by Eisenbud is more comprehensive

"A Singular Introduction to Commutative Algebra" by Pfister and Greuel is very useful from the algorithmic viewpoint

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40