Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250108 VO Introduction to Algebraic Geometry (2022S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

The time schedule is still flexible. Format should be in presence.

  • Wednesday 02.03. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.03. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.03. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 23.03. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.03. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.04. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 27.04. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 02.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 04.05. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.05. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.05. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.05. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 01.06. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 08.06. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 15.06. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 22.06. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 24.06. 11:45 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 29.06. 13:15 - 14:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This is a basic course on algebraic geometry which will be accessible for both Bachelor and Master students. The main point is to establish the amazing dictionary between geometric objects (zero-sets of polynomial equations as are the circle, the sphere, the torus, the Lemniscate, ...) and algebraic structures (ideals in polynomial rings and the related factor rings with homomorphisms between them).

This dictionary has become extremely powerful and has led to numerous high-flown theories and results in algebraic, analytic and arithmetic geometry in the last few decades.

Our approach will instead be very elementary and concrete, emphasing the main ideas and basic constructions, in order to provide a good feeling for the many phenomena and to prepare for a more advanced class, respectively the preparation of a Master's thesis.

Prerequisites are the Bachelor courses in Algebra and Topology.

Assessment and permitted materials

Written or oral exams.

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

ZWM

Last modified: Fr 09.08.2024 00:15