Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250110 VO Advanced Topics in Algebraic Geometry (2021W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
MIXED

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

If COVID situation permits, we will meet in the class, otherwise we will have to switch to zoom. On a request of participants lectures can be recorded.

  • Friday 01.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 08.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 15.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 22.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 29.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 05.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 12.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 19.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 26.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 03.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 10.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 17.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 07.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 14.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 21.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 28.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

We will study the book N. Chriss and V. Ginzburg "Representation Theory and Complex Geometry", Birkhauser 1997. The aim is to understand how algebras and their representations can be constructed geometrically by studying cohomology of algebraic varieties.
Some familiarity with algebraic geometry and algebraic topology is useful. I will however try to give a self-contained exposition of the necessary background.
If COVID situation permits, we will meet in the class, otherwise we will have to switch to zoom. On a request of participants lectures can be recorded.

Assessment and permitted materials

Oral exam

Minimum requirements and assessment criteria

Examination topics

Reading list

N. Chriss and V. Ginzburg "Representation Theory and Complex Geometry", Birkhauser 1997

Association in the course directory

MALV; MEG;

Last modified: Th 03.03.2022 13:29