Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250111 VO Diophantine Approximation (2023S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 01.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 08.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 15.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 22.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 29.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 19.04. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 26.04. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 03.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 10.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 17.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 24.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 31.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 07.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 21.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 28.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course deals with: one dimensional approximation ( continued fractions, Theorems of Dirichlet, Kronecker, Liouville and Roth's Theorem), simultaneous approximation (Geometry of Numbers, 1. and 2. Theorem of Minkowski, Minkowski's Theorem on linear forms, Khintchine's Transference principle), Equidistribution

Assessment and permitted materials

Oral Exam on the topics of the lecture.

Minimum requirements and assessment criteria

Passig the oral exam.

Examination topics

Reading list

W.M. Schmidt: Diophantine Approximation and Diophantine Equations
Gruber, Lekkerkerker: Geometrie der Zahlen
Hlawka, Schoissengeier: Geometrische und analytische Zahlentheorie

Association in the course directory

MALV

Last modified: We 12.06.2024 10:26