Warning! The directory is not yet complete and will be amended until the beginning of the term.
250115 PJ+SE Project seminar (Differential geometry) (2013S)
Continuous assessment of course work
Labels
first meegint on the seminar on Thursday, March 7 at 2:15 pm.
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 07.03. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 14.03. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 21.03. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 11.04. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 18.04. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 25.04. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 02.05. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 16.05. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 23.05. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 06.06. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 13.06. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 20.06. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
- Thursday 27.06. 14:15 - 15:45 Besprechungsraum SSC Geo 2A180 1.OG UZA II
Information
Aims, contents and method of the course
The seminar discusses the concept of holonomy and its relation to curvature. We will first work in the setting of principal connections and then move towards Berger's classification of irreducible holonomy groups of Riemannian manifolds. The seminar addresses both master students and PhD students and it will be possible to complete it in English.
Assessment and permitted materials
successfull presentation of a talk and active participation in the discussions
Minimum requirements and assessment criteria
entering a branch of modern differential geometry in greater depth, oral presentation of scientific results
Examination topics
Lectures of about 90 minutes by the participants and discussions.
Reading list
A. Clarke, B. Santoro: "Holonomy groups in riemannian geometry", available online via http://www.impa.br/opencms/pt/biblioteca/pm/PM_39.pdf .
Association in the course directory
MGES
Last modified: Tu 02.07.2024 00:17