Warning! The directory is not yet complete and will be amended until the beginning of the term.
250117 VO Lie Algebra and representation theory (2013S)
Labels
first lecture on Monday, March 4.
Details
Language: German
Examination dates
- Friday 05.07.2013
- Monday 23.09.2013
- Friday 27.09.2013
- Monday 07.10.2013
- Thursday 16.01.2014
- Friday 31.10.2014
- Monday 23.05.2016
- Friday 19.08.2016
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.03. 10:00 - 12:00 Seminarraum
- Wednesday 06.03. 10:00 - 12:00 Seminarraum
- Wednesday 13.03. 10:00 - 12:00 Seminarraum
- Monday 18.03. 10:00 - 12:00 Seminarraum
- Wednesday 20.03. 10:00 - 12:00 Seminarraum
- Monday 08.04. 10:00 - 12:00 Seminarraum
- Wednesday 10.04. 10:00 - 12:00 Seminarraum
- Monday 15.04. 10:00 - 12:00 Seminarraum
- Wednesday 17.04. 10:00 - 12:00 Seminarraum
- Monday 22.04. 10:00 - 12:00 Seminarraum
- Wednesday 24.04. 10:00 - 12:00 Seminarraum
- Monday 29.04. 10:00 - 12:00 Seminarraum
- Monday 06.05. 10:00 - 12:00 Seminarraum
- Wednesday 08.05. 10:00 - 12:00 Seminarraum
- Monday 13.05. 10:00 - 12:00 Seminarraum
- Wednesday 15.05. 10:00 - 12:00 Seminarraum
- Wednesday 22.05. 10:00 - 12:00 Seminarraum
- Monday 27.05. 10:00 - 12:00 Seminarraum
- Wednesday 29.05. 10:00 - 12:00 Seminarraum
- Monday 03.06. 10:00 - 12:00 Seminarraum
- Wednesday 05.06. 10:00 - 12:00 Seminarraum
- Monday 10.06. 10:00 - 12:00 Seminarraum
- Wednesday 12.06. 10:00 - 12:00 Seminarraum
- Monday 17.06. 10:00 - 12:00 Seminarraum
- Wednesday 19.06. 10:00 - 12:00 Seminarraum
- Monday 24.06. 10:00 - 12:00 Seminarraum
- Wednesday 26.06. 10:00 - 12:00 Seminarraum
Information
Aims, contents and method of the course
Background and motivation; General theory of Lie algebras; structure theory of complex semisimple Lie algebras; Representation theory of complex semisimple Lie algebras; Tools for analyzing finite dimensional representations.
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Basics of the relation of Lie algebras to groups (of symmetries); Rough classification of Lie algebras (solvable, nilpotent, semisimple, etc.); Structure theory and representation theory of complex semisimple Lie algebras (roots, weights, etc.), in particular for the classical Lie algebras; Techniques for analyzing finite dimensional representations.
Examination topics
lecture course, on demand the course will be taught in English
Reading list
lecture notes in English will be available via http://www.mat.univie.ac.at/~cap/lectnotes.html . (The version from spring term 2009 which is currently online will probalbly be changed slightly.)
Association in the course directory
MGEV, MALV
Last modified: Mo 07.09.2020 15:40