Warning! The directory is not yet complete and will be amended until the beginning of the term.
250118 VO Selected Topics in Harmonic Analysis (2017S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Begin: March 2.
- Thursday 02.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 06.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.05. 15:45 - 17:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.05. 15:45 - 17:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.06. 15:45 - 17:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Selected topic in harmonic analysis. The course is a continuation of last semester. The goal is to deepen selected aspects of harmonic analysis. Possible directions: (i) time-frequency analysis and Gabor frames, or (ii) L^p-theory of Fourier transform and "hard" analysis (=decompositions, maximal functions, singular integral operators), or (iii) harmonic analysis on locally compact groups or (iv) oscillatory integrals.Prerequisites: ideally a first course on harmonic analysis. Minimal requirements are: theorem of Plancherel, inversion formula, Poisson summation formula and background from functional analysis and Lebesgue measure
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Good knowledge of course content, ability to solve standard problems
Examination topics
course content
Reading list
see the annotated list at
http://homepage.univie.ac.at/karlheinz.groechenig/harmonicanalysis.pdf
http://homepage.univie.ac.at/karlheinz.groechenig/harmonicanalysis.pdf
Association in the course directory
MANV; MAMV
Last modified: Mo 07.09.2020 15:40