Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250118 VO Topics in Real Analysis (2023S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

This is a special topics course counting two hours per semester. It will be held as a four hour lecture course during the second half of the semester in May and June.

  • Wednesday 03.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 05.05. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 10.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 12.05. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 17.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 19.05. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 24.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 26.05. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 31.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 02.06. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 07.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 09.06. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 14.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 16.06. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 21.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 23.06. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 28.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 30.06. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

The course may be taken as a continuation of the real analysis course in March and April or it may be taken as an independent topic course.
Its goal is to study some real-variable methods in Fourier analysis.
Possible topics: L^p-convergence of Fourier series, Hilbert transform, Fourier transform and curvature, counting lattice points in a ball, etc.
Prerequisite: some functional analysis and measure theory, basic Fourier analysis (as taught in the bachelor studies).

Assessment and permitted materials

Oral exam at the end of the semester.

Minimum requirements and assessment criteria

Satisfactory answer of at least half of the questions.
Theoretical list of grades (as would be applied in a written exam):
88-100 sehr gut
75-87 gut
62-74 befriedigend
50-61 genuegend
<50 nicht genuegend

Examination topics

Entire course material.

Reading list

B.B.~Simon, Harmonic analysis. A Comprehensive Course in Analysis, Part 3. AMS.
E.~Lieb, M.~Loss, Analysis, AMS, 2001.
E. M. Stein und R. Shakarchi, Advanced topics from volume 4. Princeton UP, Princeton, 2003.

Association in the course directory

MANV

Last modified: Tu 16.07.2024 00:17