Warning! The directory is not yet complete and will be amended until the beginning of the term.
250121 VO Topics in Combinatorics (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The course will start on Oct. 3 at 8:30.
For now the course will take place on Tuesdays from 8:30-9:30 and on Wednesdays from 11:30-13:00. This will compensate for the times when I am away. The first time this happens is on Oct. 11.- Tuesday 03.10. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.10. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.11. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.11. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.12. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.01. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.01. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course will be centered around plane partitions and alternating sign matrices. Both are classical objects in enumerative combinatorics and especially the latter are notorious for being difficult to enumerate (the first proof of the counting formula for alternating sign matrices is given in an 84 pages paper). There are also certain classes of alternating sign arrays that are equinumerous with other classes of plane partitions, but it is a mystery that there are no satisfying explanations for such results, for instance in the form of transparent bijections.We will talk about the motivation to study such objects, which partly stems from relations to other areas such as statistical physics (in particular the famous Yang-Baxter equation), representation theory, probability and algebraic geometry. We will then present various results and their proofs, which is a great opportunity to learn about several enumeration techniques.A special feature of this lecture is that it will contain lots of results of several members of the Viennese combinatorics group, namely Moritz Gangl, Hans Höngesberg, Florian Schreier-Aigner and myself.
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Examination topics
All topics covered in the lecture
Reading list
Association in the course directory
MALV
Last modified: Mo 25.11.2024 10:46