Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250127 VO Introduction to inverse scattering theory with applications (2008W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 06.10. 11:00 - 12:00 Seminarraum
  • Tuesday 07.10. 11:00 - 12:00 Seminarraum
  • Monday 13.10. 11:00 - 12:00 Seminarraum
  • Tuesday 14.10. 11:00 - 12:00 Seminarraum
  • Monday 20.10. 11:00 - 12:00 Seminarraum
  • Tuesday 21.10. 11:00 - 12:00 Seminarraum
  • Monday 27.10. 11:00 - 12:00 Seminarraum
  • Tuesday 28.10. 11:00 - 12:00 Seminarraum
  • Monday 03.11. 11:00 - 12:00 Seminarraum
  • Tuesday 04.11. 11:00 - 12:00 Seminarraum
  • Monday 10.11. 11:00 - 12:00 Seminarraum
  • Tuesday 11.11. 11:00 - 12:00 Seminarraum
  • Monday 17.11. 11:00 - 12:00 Seminarraum
  • Tuesday 18.11. 11:00 - 12:00 Seminarraum
  • Monday 24.11. 11:00 - 12:00 Seminarraum
  • Tuesday 25.11. 11:00 - 12:00 Seminarraum
  • Monday 01.12. 11:00 - 12:00 Seminarraum
  • Tuesday 02.12. 11:00 - 12:00 Seminarraum
  • Tuesday 09.12. 11:00 - 12:00 Seminarraum
  • Monday 15.12. 11:00 - 12:00 Seminarraum
  • Tuesday 16.12. 11:00 - 12:00 Seminarraum

Information

Aims, contents and method of the course

The main objective of the course is to get acquainted with the inverse scattering transform. We will first examine in detail two classical inverse scattering problems on the half-axis and on the whole axis. We solve them for the case of Jacobi operators, where these methods can be
demonstrated most transparently. Then we will study the application of the Lax pair formalism and the inverse scattering transform method for the solution of the corresponding initial value problem of the Toda lattice
(in the whole axis case). We will also draw analogies with similar problems for one-dimensional Schrödinger operators and the initial value problems of the Korteveg- de Vries equation.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MANV

Last modified: Mo 07.09.2020 15:40