Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250131 VO Topics in Combinatorics (2018S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 07.03. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.03. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 21.03. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.04. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.04. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.04. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 02.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 23.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 13.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 20.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 27.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This course will be an introduction to integer-point enumeration in polyhedra: counting integer-points in polyhedra often leads to polynomial or quasi-polynomial enumeration formulas. Some people believe that the converse is also true: whenever we are given a counting problem whose counting function is a polynomial, the problem can be phrased as the problem of counting the integer-points in a certain family of polyhedra. We will develop this combinatorial theory and its connection to geometry and number theory. In particular, we will also study a phenomenon that is called combinatorial reciprocity: a priori, the counting polynomials that appear in connection with polyhedra only have a combinatorial interpretation for positive parameters, however, there are instances where we can give an interpretation also to negative parameters.

Assessment and permitted materials

Written exam

Minimum requirements and assessment criteria

Examination topics

The material presented in the lecture.

Reading list

Matthias Beck, Sinai Robins: Computing the Continuous Discretely, Integer-Point Enumeration in Polyhedra, Springer 2007.

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40