Warning! The directory is not yet complete and will be amended until the beginning of the term.
250133 VO Introduction to Geometric Measure Theory (2025S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- N Wednesday 05.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 06.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 13.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 02.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 08.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Thorough 30-minute oral exam based on the content of the lectures.
Minimum requirements and assessment criteria
Examination topics
All course content is examinable.
Reading list
-Leon Simon: Introduction to Geometric Measure Theory, (ed. 2017). Notes freely available online.
-Luigi Ambrosio, Nicola Fusco, Diego Pallara: Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. Oxford: Clarendon Press. xviii, 434 p. (2000).
-Lawrence C. Evans, Ronald F. Gariepy: Measure theory and fine properties of functions. 2nd revised ed. Textbooks in Mathematics. Boca Raton, FL: CRC Press. 309 p. (2015).
-Perti Mattila: Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995.
-Luigi Ambrosio, Nicola Fusco, Diego Pallara: Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. Oxford: Clarendon Press. xviii, 434 p. (2000).
-Lawrence C. Evans, Ronald F. Gariepy: Measure theory and fine properties of functions. 2nd revised ed. Textbooks in Mathematics. Boca Raton, FL: CRC Press. 309 p. (2015).
-Perti Mattila: Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995.
Association in the course directory
MGEV;MSTV;MANV
Last modified: We 15.01.2025 15:26
i) Recapitulation about key notions of measure theory; covering theorems.
ii) Hausdorff measures.
iii) Lipschitz functions; rectifiable sets; area and coarea formulas.
iv) Functions of bounded variation and sets of finite perimeter.
v) Introduction to regularity theory for perimeter minimizing sets.Additional topics might be discussed, taking the audience's interests into account.Prerequisites: Familiarity with basic functional analysis (duality, weak topologies, Riesz representation theorem), integration theory (with respect to abstract measures), Sobolev spaces and weak derivatives.