Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250134 VO Dispersive wave equations (2018S)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 01.03. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.03. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 08.03. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.03. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.03. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.03. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.04. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 12.04. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.04. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 19.04. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.04. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 26.04. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.04. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 03.05. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.05. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.05. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 17.05. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 24.05. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.05. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.06. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.06. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.06. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 14.06. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.06. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 21.06. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.06. 15:00 - 16:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 28.06. 15:00 - 16:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Dispersive equations are a very active area of research in the modern theory of partial differential equations with many crosslinks to physics. At least two Fields medals have been awarded for breakthrough contributions to dispersive PDEs and some of the strongest mathematicians worldwide are working in this field.
The course gives a gentle introduction to the theory of nonlinear dispersive wave equations. The main topics include basic well-posedness theory, tools from harmonic analysis (Calderon-Zygmund theory, Littlewood-Paley decomposition), Strichartz estimates, optimal local well-posedness, finite-time blowup, concentration-compactness techniques and stability theory. We will develop everything from scratch and the prerequisites are kept at a bare minimum. Nevertheless, we will make our way up to the forefront of current research.

Assessment and permitted materials

Oral exam.

Minimum requirements and assessment criteria

Ability to reproduce the main ideas and arguments developed in the course.

Examination topics

Everything covered in the lecture.

Reading list

I will not follow a particular reference but some books that might be useful are:
Tao: Nonlinear Dispersive Equations
Sogge: Lectures on Non-Linear Wave Equations
Rauch: Hyperbolic Equations and Geometric Optics
Kenig: Lectures on the Energy Critical Nonlinear Wave Equation
Muscalu, Schlag: Classical and Multilinear Harmonic Analysis
Grafakos: Classical Fourier Analysis, Modern Fourier Analysis
Stein, Shakarchi: Princeton Lectures in Analysis Part I, III, and IV

Association in the course directory

MANV

Last modified: Mo 07.09.2020 15:40