250138 VO Ergodic Theory (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Monday 03.07.2023
- Thursday 06.07.2023
- Monday 17.07.2023
- Monday 24.07.2023
- Friday 28.07.2023
- Tuesday 01.08.2023
- Friday 29.09.2023
- Tuesday 05.12.2023
- Thursday 14.11.2024
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 02.03. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.03. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.03. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.03. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.03. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.04. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.04. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.04. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.04. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.05. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.05. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.05. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.06. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.06. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.06. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.06. 08:00 - 09:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Ergodic Theory is a multi-faceted field of mathematics. The goal of this course is to explain how it allows us to understand (important features of) the long-term behavior of dynamical systems which are "chaotic" in that detailed predictions are impossible (for mathematical reasons). This is a "quantitative" (measure-theoretic) study of dynamical systems complementing the "qualitative" (topological) viewpoint often discussed in courses on differential equations. While everything will be illustrated in the context of simple prototypical examples, the basic theory takes place in an abstract measure-theoretic setup, and a background in (or the willingness to learn some) functional analysis and probability theory is also useful.
Assessment and permitted materials
oral exam (unless Covid regulations prescribe otherwise)
Minimum requirements and assessment criteria
Understanding and working knowledge of the material discussed in the lectures
Examination topics
Will be specified during the lectures
Reading list
Jane Hawkins, Ergodic Dynamics; From Basic Theory to Applications, Springer-Verlag2021, ISBN: 978-3-030-59242-4 (ebook) or ISBN: 978-3-030-59244-8 (paper back)
Peter Walters, An Introduction to Ergodic Theory, Springer-Verlag 1975 ISBN 0-387-95152-0.
Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete 8. Springer-Verlag, Berlin, 1987. ISBN: 3-540-15278-4
Daniel Rudolph, Fundamentals of measurable dynamics, Oxford Science Publications, Clarendon Press Oxford 1990 ISBN 0-19-853572-4
Karl Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, 1983, Cambridge University Press ISBN 0-521-38997-6
Peter Walters, An Introduction to Ergodic Theory, Springer-Verlag 1975 ISBN 0-387-95152-0.
Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete 8. Springer-Verlag, Berlin, 1987. ISBN: 3-540-15278-4
Daniel Rudolph, Fundamentals of measurable dynamics, Oxford Science Publications, Clarendon Press Oxford 1990 ISBN 0-19-853572-4
Karl Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, 1983, Cambridge University Press ISBN 0-521-38997-6
Association in the course directory
MSTV
Last modified: Fr 15.11.2024 00:15