Warning! The directory is not yet complete and will be amended until the beginning of the term.
250139 VO Martingale Theory and Optimal Transport (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.12. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
In this highly advanced course we review recent progress in the field of optimal transport, with special emphasis on the pathwise approach. It will be mainly based on recent research by W. Schachermayer and his co-authors.
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
The exam will check your good understanding of the lectures.
Examination topics
Material presented in the lectures
Reading list
M. Beiglböck, G. Pammer, W. Schachermayer: From Bachelier to Dupire via Optimal Transport. Preprint (2021).
[arXiv:2106.12395]
Please download PDF from the following link: https://arxiv.org/abs/2106.12395Backhoff J. und Huesmann M. (2021) Stochastic Mass Transport,
Preprint. Please download PDF from the following link:
https://www.mat.univie.ac.at/~schachermayer/ScriptsRonen Eldan: Analysis of high-dimensional distributions using path wise methods. Preprint (2021): https://www.wisdom.weizmann.ac.il/~ronene/files/Pathwise.pdfI. Karatzas, W. Schachermayer, B. Tschiderer:
A trajectorial approach to the gradient flow properties of Langevin-Smoluchowsk diffusions. Teor. Veroyatnost. i Primenen & SIAM Theory Probab. Appl., Vol. 66 (2021), No. 4, pp. 839--888.
Please download PDF from the following link: https://arxiv.org/abs/2008.09220G. Pammer, B. A. Robinson, W. Schachermayer:
A regularized Kellerer theorem in arbitrary dimension.
Preprint (2022). arXiv:2210.13847]
Please download PDF from the following link: https://arxiv.org/abs/2210.13847J. Backhoff-Veraguas, M. Beiglböck, Tschiderer, W. Schachermayer:
The structure of martingale Benamou−Brenier in Rd.
Preprint (2023). [arXiv:2306.11019]
Please download the PDF from the following link: https://arxiv.org/abs/2306.11019
[arXiv:2106.12395]
Please download PDF from the following link: https://arxiv.org/abs/2106.12395Backhoff J. und Huesmann M. (2021) Stochastic Mass Transport,
Preprint. Please download PDF from the following link:
https://www.mat.univie.ac.at/~schachermayer/ScriptsRonen Eldan: Analysis of high-dimensional distributions using path wise methods. Preprint (2021): https://www.wisdom.weizmann.ac.il/~ronene/files/Pathwise.pdfI. Karatzas, W. Schachermayer, B. Tschiderer:
A trajectorial approach to the gradient flow properties of Langevin-Smoluchowsk diffusions. Teor. Veroyatnost. i Primenen & SIAM Theory Probab. Appl., Vol. 66 (2021), No. 4, pp. 839--888.
Please download PDF from the following link: https://arxiv.org/abs/2008.09220G. Pammer, B. A. Robinson, W. Schachermayer:
A regularized Kellerer theorem in arbitrary dimension.
Preprint (2022). arXiv:2210.13847]
Please download PDF from the following link: https://arxiv.org/abs/2210.13847J. Backhoff-Veraguas, M. Beiglböck, Tschiderer, W. Schachermayer:
The structure of martingale Benamou−Brenier in Rd.
Preprint (2023). [arXiv:2306.11019]
Please download the PDF from the following link: https://arxiv.org/abs/2306.11019
Association in the course directory
MSTV
Last modified: Tu 18.06.2024 10:46