Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250142 SE Seminar Combinatorics (2023S)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 06.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.04. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.04. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This seminar will concentrate on the study of concepts, techniques and results from the theory of q-series, an area relevant to combinatorics and number theory. The material to be covered will include inversions, q-binomial theorems, partitions of numbers, q-identities, sums of squares, Ramanujan congruences, combinatorial results, etc. Individual students will be responsible to survey essential contents of selected sections from the course book in a well-prepared lecture.

Assessment and permitted materials

The quality of the lecture, regular attendance and active participation determine the grade.

Minimum requirements and assessment criteria

Students shall learn and train to give understandable well-prepared specialized lectures. In addition the acquired material shall be collectively discussed.

Examination topics

Relevant chapters of "An introduction to q-analysis" (see the literature).

Reading list

Warren P. Johnson: "An introduction to q-analysis", American Mathematical Society, Providence, RI, 2020.
Online-Ressource of the UB: https://ubdata.univie.ac.at/AC16759274

Association in the course directory

MALS

Last modified: Tu 14.03.2023 12:09