250144 VO Neural Network Theory (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 13.02.2020
- Thursday 27.02.2020
- Monday 02.03.2020
- Friday 15.05.2020
- Friday 24.07.2020
- Wednesday 20.01.2021
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Deep neural networks form the backbone of most modern machine learning algorithms. Additionally, neural networks are mathematical objects that can be theoretically analysed to obtain profound insights explaining many phenomena that are observed in applications. In this lecture series, we present a comprehensive collection of such results.Lecture notes will be developed during the semester.This class will _not_ discuss algorithms to train deep neural networks for various specific applications.
Assessment and permitted materials
There will be an oral exam at the end of the semester.
Minimum requirements and assessment criteria
The lecture can be followed best with a working knowledge of basic concepts of functional analysis and Fourier analysis.
Examination topics
Everything covered in the course.
Reading list
Peter L. Bartlett, Martin Anthony, Neural Network Learning: Theoretical Foundations, Cambridge University Press,1999
The lecture notes (http://pc-petersen.eu/Neural_Network_Theory.pdf )
The lecture notes (http://pc-petersen.eu/Neural_Network_Theory.pdf )
Association in the course directory
MAMV; MSTV;
Last modified: Th 11.02.2021 00:25