Warning! The directory is not yet complete and will be amended until the beginning of the term.
250147 VO Topics Course Biomathematics (2022W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 03.10. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 06.10. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.10. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 13.10. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.10. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 20.10. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.10. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 27.10. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.10. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 03.11. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.11. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 10.11. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.11. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 17.11. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.11. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 24.11. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.11. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 01.12. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.12. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 12.12. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 15.12. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.01. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 12.01. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.01. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 19.01. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.01. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 26.01. 08:00 - 09:30 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.01. 16:45 - 18:15 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Will be distributed by email
Minimum requirements and assessment criteria
Strong undergraduate probability. Some knowledge on the following topics: Stochastic processes, Markov processes (discrete and continuous time), Brownian motion, diffusions. No knowledge of measure theory will be required.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Two graded home-works will be assigned during the semester. The final exam will be an oral exam (duration to be determined).
Art der Leistungskontrolle und erlaubte Hilfsmittel
Two graded home-works will be assigned during the semester. The final exam will be an oral exam (duration to be determined).
Examination topics
Reading list
Will be distributed by email.
Association in the course directory
Last modified: Fr 03.03.2023 12:29
In this course, I will introduce several of the aforementioned probabilistic models and introduce various technics to analyse them. I will start from the Wright-Fisher diffusion(s) describing the evolution of the genetic composition in large populations. I will show that an efficient way to analyse such models relies on the description of their underlying genealogical structure. More precisely, if several individuals are sampled from an extent population, one can trace backward in time the genealogical lines of those individuals. I will show how coalescent theory (Kingman coalescent, $\Lamda$-coalescents) provides an elegant description of this genealogy, and how it allows to draw predictions on the genetic structure of large populations.
If time permits, I will also show how the previous approaches can be carried through in epidemiogy in order to describe a viral expansion (Feller diffusion) and its underlying genealogical structure of such a population (coalescent point processes).
Along the way, I hope to introduce general probabilistic concepts which will be of independent interest : martingales, duality, exchangeability etc.