Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250158 VO Ergodic Theory and Dynamical Systems I (2018W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 02.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 23.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 30.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 06.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 11.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Ergodic Theory is a multi-faceted field of mathematics. The goal of this course is to explain how it allows us to understand (important features of) the long-term behavior of dynamical systems which are "chaotic" in that detailed predictions are impossible (for mathematical reasons). This is a "quantitative" (measure-theoretic) study of dynamical systems complementing the "qualitative" (topological) viewpoint often discussed in courses on diferential equations. While everything will be illustrated in the context of basic prototypical examples, the basic theory takes place in an abstract measure-theoretic setup, and a background in (or the willingness to learn some) functional analysis and probability theory is also useful.

Assessment and permitted materials

oral exam

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MSTV

Last modified: Sa 18.12.2021 00:24