Warning! The directory is not yet complete and will be amended until the beginning of the term.
250158 VO Ergodic Theory and Dynamical Systems I (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Wednesday 13.02.2019
- Thursday 21.02.2019
- Monday 25.02.2019
- Wednesday 13.03.2019
- Monday 25.03.2019
- Monday 01.04.2019
- Friday 05.04.2019
- Tuesday 30.04.2019
- Friday 10.05.2019
- Monday 08.07.2019
- Tuesday 27.08.2019
- Wednesday 13.11.2019
- Tuesday 21.07.2020
- Friday 17.12.2021
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 02.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 06.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Ergodic Theory is a multi-faceted field of mathematics. The goal of this course is to explain how it allows us to understand (important features of) the long-term behavior of dynamical systems which are "chaotic" in that detailed predictions are impossible (for mathematical reasons). This is a "quantitative" (measure-theoretic) study of dynamical systems complementing the "qualitative" (topological) viewpoint often discussed in courses on diferential equations. While everything will be illustrated in the context of basic prototypical examples, the basic theory takes place in an abstract measure-theoretic setup, and a background in (or the willingness to learn some) functional analysis and probability theory is also useful.
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
MSTV
Last modified: Sa 18.12.2021 00:24