Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250159 VO Geometry and linear algebra for secondary school teacher accreditation programme (2024S)

8.00 ECTS (5.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 05.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 11.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 13.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 18.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 19.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 08.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 09.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 10.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 15.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 16.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 22.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 23.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 24.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 29.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 30.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 06.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 07.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 08.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 13.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 14.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 21.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 22.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 27.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 28.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 03.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 04.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 05.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 10.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 11.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 17.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 18.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 19.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 24.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 25.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

The lecture will give an introduction to the following fields for future teachers:
1. Linear algebra on R^n. In particular we will cover matrix calculations, determinants of 2x2 and 3x3 matrices, linear maps, systems of linear equations and Gaussian elimination, eigenvalues and eigenvectors, and the vector product.
2. Elementary and analytic geometry and trigonometry, including the notions point, line and plane, the intercept theorem, properties of triangles (e.g., the Pythagorean theorem) and circles (e.g., the inscribed angle theorem), plane isometries and conic sections.
For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ss2024.html

Assessment and permitted materials

One-hour written examination. Answering several questions students have to reproduce definitions, theorems, lemmas, corollaries and proofs presented in the lectures and have to demonstrate their ability to apply the construction and calculation techniques covered. The detailed allocation of points is given on the examination paper. The only permitted aids are ruler and compass, i.e., literature and pocket calculators are not permitted.

Minimum requirements and assessment criteria

The grade is determined by the percentage of the points achieved by the student.
Let n denote this percentage.
sehr gut [1]: 87,5% <= n <= 100% / gut [2]: 75% <= n < 87,5% / befriedigend [3]: 62,5% <= n < 75% / genügend [4]: 50% <= n < 62,5% / nicht genügend [5]: n < 50%

Examination topics

At the exam students have to demonstrate their command of the definitions, lemmas, theorems, corollaries and proofs presented in the lectures and their ability to apply the calculation and construction techniques covered.

Reading list

I. Agricola, T. Friedrich, Elementargeometrie
G. Choquet, Neue Elementargeometrie
Euklid, Die Elemente
F. Hartshorne, Geometry: Euclid and Beyond
D. Hilbert, Grundlagen der Geometrie
M. Koecher, Lineare Algebra und analytische Geometrie
M. Koecher, A. Krieg, Ebene Geometrie
E.E. Moise, Elementary Geometry from an Advanced Standpoint

Association in the course directory

UFMA03

Last modified: Mo 14.10.2024 11:06