Warning! The directory is not yet complete and will be amended until the beginning of the term.
250189 VO Advanced probability theory (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 06.05.2021
- Thursday 01.07.2021
- Monday 05.07.2021
- Tuesday 13.07.2021
- Wednesday 14.07.2021
- Friday 16.07.2021
- Tuesday 20.07.2021
- Monday 16.08.2021
- Tuesday 07.09.2021
- Tuesday 12.10.2021
- Thursday 04.11.2021
- Monday 15.11.2021
- Tuesday 04.01.2022
- Friday 28.01.2022
- Tuesday 15.03.2022
- Thursday 07.04.2022
- Monday 11.07.2022
Lecturers
Classes (iCal) - next class is marked with N
-
Thursday
04.03.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
11.03.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
18.03.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
25.03.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
15.04.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
22.04.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
29.04.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
06.05.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
20.05.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
27.05.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
10.06.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
17.06.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß -
Thursday
24.06.
08:00 - 11:15
Digital
Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam (contact the lecturer directly)
Minimum requirements and assessment criteria
The course is in English.
No specific background is assumed.
Intuition coming from basic Probability Theory and Mathematical Analysis would be helpful.
No specific background is assumed.
Intuition coming from basic Probability Theory and Mathematical Analysis would be helpful.
Examination topics
All of the above, excluding percolation
Reading list
Billingsley "Probability and Measure"
https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
Association in the course directory
MSTW
Last modified: Fr 12.05.2023 00:21
- random variables, expectation, independence
- Borel-Cantelli lemmas, Kolmogorov zero-one law
- law of large numbers
- weak convergence
- central limit theorem
- martingalesAn additional chapter of the course (not required for the exam) is an introduction to the percolation theory (https://en.wikipedia.org/wiki/Percolation_theory):
- classical theorems about the phase transition
- brief overview of recent progress (two Fields Medals, multiple breakthroughs)
- open questions
The aim of this chapter is to give a beautiful example of a probability space and to familiarize the audience with this exciting area of Mathematics.