Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250191 VO VO Schulmathematik Angewandte Mathematik (2020S)

2.00 ECTS (2.00 SWS), SPL 25 - Mathematik
PH-NÖ

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

For Information regarding Home-Learning please see the Moodle-Page of the course.

  • Monday 02.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 09.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 16.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 23.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 30.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 20.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 27.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 04.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 11.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 18.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 25.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 08.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 15.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 22.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 29.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

Awareness of the possibilities and limits of math teaching related to reality and as a consequence being able to derive didactic implications.

Modelling is one of the competencies, which are dominating the current discussion in mathematics education. Contributions to this topic include almost all fields of (school-)mathematics and all levels.
The central theme in this variety of contents and complexities is the so called modelling cycle: first a real situation must be simplified and structured to get a real model. Then a mathematical model is formed by translating the real model into the language of mathematics, Now one can use mathematical methods to find solutions. These solutions have to be interpreted in relation to the real model. Last but not least a validation with respect to the original situation must happen. If it is not satisfying, the cycle will be passed once again with (slightly) changed parameters, conditions etc.

In this course many different school relevant examples will be presented to demonstrate, analyse, discuss and reflect this process. Furthermore, some aspects of numerical mathematics, which play a role in school, should complete this lecture.

Assessment and permitted materials

Valid for the exam date December 18, 2020: Online written exam on Moodle. Duration: 60 minutes, you have to complete six items. To upload the drafts there are 20 minutes extra time.

Minimum requirements and assessment criteria

Analysis and reflection of important (didactical) concepts and conceptions of applied mathematics with respect to corresponding contents of school mathematics.

Valid for the exam date December 18, 2020: At least half of the given tasks at the colloquium must be answered right in order to complete the lecture positively. The elaborations are to be made understandable.
There is one point per task, no half points are awarded.

Examination topics

Lecture given in a classical way with the option to discuss also during the course. The total content of the lectures is what you have to learn to pass the written exam.

Reading list

Ableitinger, Christoph: Biomathematische Modelle im Unterricht. Fachwissenschaftliche und didaktische Grundlagen mit Unterrichtsmaterialien [Biomathematical models in class. Scientific and didactic foundations with classroom materials. In German]. Springer Vieweg+Teubner, Wiesbaden 2011.
Beutelspacher, Albrecht and Zschiegner, Marc-Alexander: Diskrete Mathematik für Einsteiger. Mit Anwendungen in Technik und Informatik [Discrete mathematics for beginners. Bachelor and teacher education. In German]. Springer Fachmedien, Wiesbaden 2014 (fifth edition).
Daume, Peggy: Finanzmathematik im Unterricht. Aktien und Optionen: Mathematische und didaktische Grundlagen mit Unterrichtsmaterialien. [Financial mathematics in math education. Shares and options: Mathematical and didactic basics with teaching materials. In German] Vieweg+Teubner, Wiesbaden 2009.
Engel, Joachim: Anwendungsorientierte Mathematik: Von Daten zur Funktion. Eine Einführung in die mathematische Modellbildung für Lehramtsstudierende [Application oriented mathematics. From data to function. An introduction to modelling for teacher students. In German]. Springer, Berlin Heidelberg 2010.
Haftendorn, Dörte: Mathematik sehen und verstehen. Schlüssel zur Welt [Seeing and understanding mathematics. Key to the world. In German]. Spektrum Akademischer Verlag, Heidelberg 2010.
Humenberger, Johann and Reichel, Hans-Christian: Fundamentale Ideen der Angewandten Mathematik und ihre Umsetzung im Unterricht [Fundamental ideas of applied mathematics. In German]. Lehrbücher und Monographien zur Didaktik der Mathematik, Band 31. Edited by N. Knoche and H. Scheid. BI Wissenschaftsverlag, Mannheim u. a. 1995.
Maaß, Jürgen: Modellieren in der Schule. Ein Lernbuch zu Theorie und Praxis des realitätsbezogenen Mathematikunterrichts [Modeling in school. A learning book on theory and practice of application-oriented mathematics teaching. In German]. Schriften zum Modellieren und zum Anwenden von Mathematik, Band 5. Edited by Stanislaw Schukajlow-Wasjutinski. WTM, Münster 2015.
Schriftenreihe der ISTRON-Gruppe. (Neue) Materialien für einen realitätsbezogenen
Mathematikunterricht. 24 Bände von 1994 bis 2019 [Series of the ISTRON group. (New) materials for
Mathematics teaching related to reality. 24 volumes from 1994 to 2019. In German]. Franzbecker, Hildesheim (u. a.) und Springer Fachmedien, Wiesbaden:
https://verlagfranzbecker.de/c/mint/mathematik/istron-materialien-fuer-einen-realitaetsbezogenen-mathematikunterricht
https://www.springerprofessional.de/realitaetsbezuege-im-mathematikunterricht/4259764
Schuppar, Berthold and Humenberger, Hans: Elementare Numerik für die Sekundarstufe [Elementary numerical mathematics for secondary education. In German]. Springer, Berlin Heidelberg 2015.
Siller, Hans-Stefan: Modellbilden -- eine zentrale Leitidee der Mathematik [Modelling. A central idea of mathematics. In German]. Schriften zur Didaktik der Mathematik und Informatik an der Universität Salzburg, Volume 2. Shaker Verlag, Aachen 2008.
Waldecker, Rebecca and Rempe-Gillen, Lasse: Primzahltests für Einsteiger. Zahlentheorie -- Algorithmik -- Kryptographie [Primality testing for beginners. Number theory -- algorithmics -- cryptography. In German]. Springer Fachmedien, Wiesbaden 2016 (second edition).

Association in the course directory

UFMAMA03

Last modified: Fr 12.05.2023 00:46