Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250353 VO Partial Differential Equations 2 (2006S)

Partial Differential Equations 2

0.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Erstmals am Mittwoch, 1.3.2006

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 01.03. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 08.03. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 15.03. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 22.03. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 29.03. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 05.04. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 26.04. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 03.05. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 10.05. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 17.05. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 24.05. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 31.05. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 07.06. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 14.06. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 21.06. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II
  • Wednesday 28.06. 11:15 - 12:45 Seminarraum 2A310 3.OG UZA II

Information

Aims, contents and method of the course

In the course PDEs 1 classical solutions of PDEs were treated. But for many problems stemming from Physics, from Pure and Applied Mathematics a generalization is necessary (distributional solutions, weak solutions). Mainly with such kind of solutions we shall deal in this course. Amoung the topics are: nonlinear initial value problems (in particular for the Burgers equation). The main part of the course will deal with linear PDEs of 2nd order, treating in particular elliptic boundary value problems and eigenvalue problems. For this functional analytic methods will be essential.

Assessment and permitted materials

Minimum requirements and assessment criteria

continuation of PDEs 1: To aquire basic knowledge in PDEs

Examination topics

Analytical methods, in particular Functional Analysis

Reading list

Evans, L.C., Partial Differential Equations, Graduate Studies in Math., Vol.19, AMS 1998
Gilbarg, D. and Trudinger, N.S., Elliptic PDEs of 2nd Order, Springer 1998 M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Springer 1993
J. Smoller, Shockwaves and Reaction-Diffusion Equations, Springer
B. Folland, Introduction to Partial Differential Equations, Princeton University Press, 1995

Association in the course directory

Last modified: Sa 02.04.2022 00:24