Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250357 VO Algebraic Topology (2006S)

Algebraic Topology

0.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Erstmals am Mittwoch, 1.3.2006

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 01.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 02.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 06.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 07.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 08.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 09.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 14.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 15.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 16.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 20.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 21.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 22.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 23.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 27.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 28.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 29.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 30.03. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 03.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 04.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 05.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 06.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 24.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 25.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 26.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 27.04. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 02.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 03.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 04.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 08.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 09.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 10.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 11.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 15.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 16.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 17.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 18.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 22.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 23.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 24.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 29.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 30.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 31.05. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 01.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 07.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 08.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 12.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 13.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 14.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 19.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 20.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 21.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 22.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Monday 26.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Tuesday 27.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 28.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
  • Thursday 29.06. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II

Information

Aims, contents and method of the course

In algebraic topology one analyzes topological spaces with algebraic methods and takes up the question of isomorphy of such spaces.

Assessment and permitted materials

Minimum requirements and assessment criteria

This is a first introduction in this topic

Examination topics

This is achieved by associating groups (the fundamental group, homotopy -, homology - and
cohomology groups) to the topological spaces and to investigate in how far these groups change when the space is changed and to deduce the none-isomorphy of the spaces from that of the associated groups.

Reading list

Ich werde mich bei der Vorlesung weitgehend an [R. Stöcker, H. Zieschang: Algebraische Topologie, Teubner (1988) Stuttgart] halten. Eine größtenteils englische Zusammenfassung werde ich zu Beginn des Semesters
ins Netz stellen. Mehr und aktuelle Details unter http://www.mat.univie.ac.at/~kriegl/LVA-2006-SS.html

Association in the course directory

Last modified: Sa 02.04.2022 00:24