Warning! The directory is not yet complete and will be amended until the beginning of the term.
250363 VO Selected topics in Algebraic Geometry (2006S)
Selected topics in Algebraic Geometry
Labels
Erstmals am Montag, 6.3.2006
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Monday 06.03. 10:00 - 12:00 Seminarraum
- Thursday 09.03. 11:00 - 12:30 Seminarraum
- Thursday 16.03. 11:00 - 12:30 Seminarraum
- Monday 20.03. 10:00 - 12:00 Seminarraum
- Thursday 23.03. 11:00 - 12:30 Seminarraum
- Monday 27.03. 10:00 - 12:00 Seminarraum
- Thursday 30.03. 11:00 - 12:30 Seminarraum
- Monday 03.04. 10:00 - 12:00 Seminarraum
- Thursday 06.04. 11:00 - 12:30 Seminarraum
- Monday 24.04. 10:00 - 12:00 Seminarraum
- Thursday 27.04. 11:00 - 12:30 Seminarraum
- Thursday 04.05. 11:00 - 12:30 Seminarraum
- Monday 08.05. 10:00 - 12:00 Seminarraum
- Thursday 11.05. 11:00 - 12:30 Seminarraum
- Monday 15.05. 10:00 - 12:00 Seminarraum
- Thursday 18.05. 11:00 - 12:30 Seminarraum
- Monday 22.05. 10:00 - 12:00 Seminarraum
- Monday 29.05. 10:00 - 12:00 Seminarraum
- Thursday 01.06. 11:00 - 12:30 Seminarraum
- Thursday 08.06. 11:00 - 12:30 Seminarraum
- Monday 12.06. 10:00 - 12:00 Seminarraum
- Monday 19.06. 10:00 - 12:00 Seminarraum
- Thursday 22.06. 11:00 - 12:30 Seminarraum
- Monday 26.06. 10:00 - 12:00 Seminarraum
- Thursday 29.06. 11:00 - 12:30 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
To acquire an understanding of basic geometric properties of algebraic varieties
Examination topics
lecture course
Reading list
Milne "Algebraic Geometry", Skriptum zur VorlesungHartshorne "Algebraic Geometry"Bump "Algebraic Geometry"Kunz "Kommutative Algebra und Algebraische Geometrie"Shafarevich "Basic Algebraic Geometry"
Association in the course directory
Last modified: Mo 07.09.2020 15:40
Thus, participants are expected to be familiar with basic properties of varieties and morphisms. We will cover dimension theory of varieties, finite morphisms, regular and singular
points, intersection theory.