Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250365 VO Global Analysis (2007S)

Global Analysis

8.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 06.03. 15:15 - 16:45 Seminarraum
  • Thursday 08.03. 13:15 - 14:45 Seminarraum
  • Tuesday 13.03. 15:15 - 16:45 Seminarraum
  • Thursday 15.03. 13:15 - 14:45 Seminarraum
  • Tuesday 20.03. 15:15 - 16:45 Seminarraum
  • Thursday 22.03. 13:15 - 14:45 Seminarraum
  • Tuesday 27.03. 15:15 - 16:45 Seminarraum
  • Thursday 29.03. 13:15 - 14:45 Seminarraum
  • Tuesday 17.04. 15:15 - 16:45 Seminarraum
  • Thursday 19.04. 13:15 - 14:45 Seminarraum
  • Tuesday 24.04. 15:15 - 16:45 Seminarraum
  • Thursday 26.04. 13:15 - 14:45 Seminarraum
  • Thursday 03.05. 13:15 - 14:45 Seminarraum
  • Tuesday 08.05. 15:15 - 16:45 Seminarraum
  • Thursday 10.05. 13:15 - 14:45 Seminarraum
  • Tuesday 15.05. 15:15 - 16:45 Seminarraum
  • Tuesday 22.05. 15:15 - 16:45 Seminarraum
  • Thursday 24.05. 13:15 - 14:45 Seminarraum
  • Thursday 31.05. 13:15 - 14:45 Seminarraum
  • Tuesday 05.06. 15:15 - 16:45 Seminarraum
  • Tuesday 12.06. 15:15 - 16:45 Seminarraum
  • Thursday 14.06. 13:15 - 14:45 Seminarraum
  • Tuesday 19.06. 15:15 - 16:45 Seminarraum
  • Thursday 21.06. 13:15 - 14:45 Seminarraum
  • Tuesday 26.06. 15:15 - 16:45 Seminarraum
  • Thursday 28.06. 13:15 - 14:45 Seminarraum

Information

Aims, contents and method of the course

his lecture course provides an introduction to the theory of differential operators on vector bundles, up to the notion of index for elliptic differential operators. First we will introduce resp. repeat
some basic notions of Hilbert space theory (compact operators, Lax-Milgram, Fredholm-Operators). Then these results will be applied to the study of elliptic differential operators, first on the torus and then on bounded regions in euclidean space (embedding theorems (Sobolev, Rellich), Garding inequality). We then introduce the notion of differential operator on vector bundles. Finally we define Sobolev spaces on vector bundles, prove the Hodge theorem and study the index of elliptic differential operators.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

Last modified: Mo 07.09.2020 15:40