Warning! The directory is not yet complete and will be amended until the beginning of the term.
250409 VO Ergodentheorie (2006S)
Ergodentheorie
Labels
Erstmals am Mittwoch, 1.3.2006
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 11:00 - 13:00 Seminarraum
- Tuesday 07.03. 11:00 - 13:00 Seminarraum
- Wednesday 08.03. 11:00 - 13:00 Seminarraum
- Tuesday 14.03. 11:00 - 13:00 Seminarraum
- Wednesday 15.03. 11:00 - 13:00 Seminarraum
- Tuesday 21.03. 11:00 - 13:00 Seminarraum
- Wednesday 22.03. 11:00 - 13:00 Seminarraum
- Tuesday 28.03. 11:00 - 13:00 Seminarraum
- Wednesday 29.03. 11:00 - 13:00 Seminarraum
- Tuesday 04.04. 11:00 - 13:00 Seminarraum
- Wednesday 05.04. 11:00 - 13:00 Seminarraum
- Tuesday 25.04. 11:00 - 13:00 Seminarraum
- Wednesday 26.04. 11:00 - 13:00 Seminarraum
- Tuesday 02.05. 11:00 - 13:00 Seminarraum
- Wednesday 03.05. 11:00 - 13:00 Seminarraum
- Tuesday 09.05. 11:00 - 13:00 Seminarraum
- Wednesday 10.05. 11:00 - 13:00 Seminarraum
- Tuesday 16.05. 11:00 - 13:00 Seminarraum
- Wednesday 17.05. 11:00 - 13:00 Seminarraum
- Tuesday 23.05. 11:00 - 13:00 Seminarraum
- Wednesday 24.05. 11:00 - 13:00 Seminarraum
- Tuesday 30.05. 11:00 - 13:00 Seminarraum
- Wednesday 31.05. 11:00 - 13:00 Seminarraum
- Wednesday 07.06. 11:00 - 13:00 Seminarraum
- Tuesday 13.06. 11:00 - 13:00 Seminarraum
- Wednesday 14.06. 11:00 - 13:00 Seminarraum
- Tuesday 20.06. 11:00 - 13:00 Seminarraum
- Wednesday 21.06. 11:00 - 13:00 Seminarraum
- Tuesday 27.06. 11:00 - 13:00 Seminarraum
- Wednesday 28.06. 11:00 - 13:00 Seminarraum
Information
Aims, contents and method of the course
The emphasis of this lecture course is on Ergodic Theory, but a number of topics in Topological Dynamics will also be discussed. Special attention will be given to examples from and connections with a variety of areas of mathematics (like Probability Theory or Number Theory).Special topics:1. A short introduction to topological dynamics,2. Recurrence and ergodic theorems,3. Mixing properties,4. Spectral properties,5. Information und entropy,6. Examples and applications in various areas of mathematics.
Assessment and permitted materials
Minimum requirements and assessment criteria
Introduction to the subject and to current research
Examination topics
Lecture course
Reading list
W. Parry, Topics in ergodic theory, Cambridge University Press, Cambridge, 1981.K. Petersen, Ergodic theory, Cambridge University Press, Cambridge, 1983.P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer Verlag, Berlin-Heidelberg-New York, 1982.
Association in the course directory
Last modified: Mo 07.09.2020 15:40