Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250422 VO Attractors of Nonlinear PDES (2006S)

Attractors of Nonlinear PDES

0.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Vorbesprechung am Dienstag, 7.3.2006 und Mittwoch, 8.3.2006, 10:00 Uhr-12:00 Uhr, A 109, UZA 4.

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 03.03. 14:00 - 16:00 Seminarraum
  • Monday 06.03. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 10.03. 14:00 - 16:00 Seminarraum
  • Friday 17.03. 14:00 - 16:00 Seminarraum
  • Monday 20.03. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 24.03. 14:00 - 16:00 Seminarraum
  • Monday 27.03. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 31.03. 14:00 - 16:00 Seminarraum
  • Monday 03.04. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 07.04. 14:00 - 16:00 Seminarraum
  • Monday 24.04. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 28.04. 14:00 - 16:00 Seminarraum
  • Friday 05.05. 14:00 - 16:00 Seminarraum
  • Monday 08.05. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 12.05. 14:00 - 16:00 Seminarraum
  • Monday 15.05. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 19.05. 14:00 - 16:00 Seminarraum
  • Monday 22.05. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 26.05. 14:00 - 16:00 Seminarraum
  • Monday 29.05. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 02.06. 14:00 - 16:00 Seminarraum
  • Friday 09.06. 14:00 - 16:00 Seminarraum
  • Monday 12.06. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 16.06. 14:00 - 16:00 Seminarraum
  • Monday 19.06. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 23.06. 14:00 - 16:00 Seminarraum
  • Monday 26.06. 15:00 - 17:00 Seminarraum 2A310 3.OG UZA II
  • Friday 30.06. 14:00 - 16:00 Seminarraum

Information

Aims, contents and method of the course

Global Attractors for 3D wave equation coupled to a relativistic particle in presence of external confining potential.

a) Li\'enard-Wiechert integral representation,

b) energy flow to infinity,

c) convolution representation and the Wiener Tauberian Theorem:
radiative damping,

d) omega-limit states.

Ref: [1], [2], [3].

Assessment and permitted materials

Minimum requirements and assessment criteria

To give an introduction to modern theory of attractors
of nonlinear hyperbolic PDEs:
harmonic analysis, global attractors.

Examination topics

Energy propagation, the Wiener Tauberian Theorem.

Reading list

[1] Komech, Linear Partial Differential Equations with Constant Coefficients, p.127-260 in: Yu.V.Egorov, A.I.Komech, M.A.Shubin,
Elements of the Modern Theory of Partial Differential Equations, Springer, Berlin, 1999.

[2] A.Komech, H.Spohn, M.Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Diff. Eqns., 22 (1997), no. 1/2, 307-335.

[3] W.Rudin, Functional analysis, McGraw-Hill, NY, 1991.

Association in the course directory

Last modified: Sa 02.04.2022 00:24