Warning! The directory is not yet complete and will be amended until the beginning of the term.
250500 VO Commutative Algebra (2006W)
Commutative Algebra
Labels
Erstmals am Montag, 2 Oktober 2006
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Monday 02.10. 11:00 - 12:00 Seminarraum
- Tuesday 03.10. 11:00 - 12:00 Seminarraum
- Wednesday 04.10. 11:00 - 12:00 Seminarraum
- Thursday 05.10. 11:00 - 12:00 Seminarraum
- Monday 09.10. 11:00 - 12:00 Seminarraum
- Tuesday 10.10. 11:00 - 12:00 Seminarraum
- Wednesday 11.10. 11:00 - 12:00 Seminarraum
- Thursday 12.10. 11:00 - 12:00 Seminarraum
- Monday 16.10. 11:00 - 12:00 Seminarraum
- Tuesday 17.10. 11:00 - 12:00 Seminarraum
- Wednesday 18.10. 11:00 - 12:00 Seminarraum
- Thursday 19.10. 11:00 - 12:00 Seminarraum
- Monday 23.10. 11:00 - 12:00 Seminarraum
- Tuesday 24.10. 11:00 - 12:00 Seminarraum
- Wednesday 25.10. 11:00 - 12:00 Seminarraum
- Monday 30.10. 11:00 - 12:00 Seminarraum
- Tuesday 31.10. 11:00 - 12:00 Seminarraum
- Monday 06.11. 11:00 - 12:00 Seminarraum
- Tuesday 07.11. 11:00 - 12:00 Seminarraum
- Wednesday 08.11. 11:00 - 12:00 Seminarraum
- Thursday 09.11. 11:00 - 12:00 Seminarraum
- Monday 13.11. 11:00 - 12:00 Seminarraum
- Tuesday 14.11. 11:00 - 12:00 Seminarraum
- Wednesday 15.11. 11:00 - 12:00 Seminarraum
- Thursday 16.11. 11:00 - 12:00 Seminarraum
- Monday 20.11. 11:00 - 12:00 Seminarraum
- Tuesday 21.11. 11:00 - 12:00 Seminarraum
- Wednesday 22.11. 11:00 - 12:00 Seminarraum
- Thursday 23.11. 11:00 - 12:00 Seminarraum
- Monday 27.11. 11:00 - 12:00 Seminarraum
- Tuesday 28.11. 11:00 - 12:00 Seminarraum
- Wednesday 29.11. 11:00 - 12:00 Seminarraum
- Thursday 30.11. 11:00 - 12:00 Seminarraum
- Monday 04.12. 11:00 - 12:00 Seminarraum
- Tuesday 05.12. 11:00 - 12:00 Seminarraum
- Wednesday 06.12. 11:00 - 12:00 Seminarraum
- Thursday 07.12. 11:00 - 12:00 Seminarraum
- Monday 11.12. 11:00 - 12:00 Seminarraum
- Tuesday 12.12. 11:00 - 12:00 Seminarraum
- Wednesday 13.12. 11:00 - 12:00 Seminarraum
- Thursday 14.12. 11:00 - 12:00 Seminarraum
- Monday 08.01. 11:00 - 12:00 Seminarraum
- Tuesday 09.01. 11:00 - 12:00 Seminarraum
- Wednesday 10.01. 11:00 - 12:00 Seminarraum
- Thursday 11.01. 11:00 - 12:00 Seminarraum
- Monday 15.01. 11:00 - 12:00 Seminarraum
- Tuesday 16.01. 11:00 - 12:00 Seminarraum
- Wednesday 17.01. 11:00 - 12:00 Seminarraum
- Thursday 18.01. 11:00 - 12:00 Seminarraum
- Monday 22.01. 11:00 - 12:00 Seminarraum
- Tuesday 23.01. 11:00 - 12:00 Seminarraum
- Wednesday 24.01. 11:00 - 12:00 Seminarraum
- Thursday 25.01. 11:00 - 12:00 Seminarraum
- Monday 29.01. 11:00 - 12:00 Seminarraum
- Tuesday 30.01. 11:00 - 12:00 Seminarraum
- Wednesday 31.01. 11:00 - 12:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Commutative Algebra should be developed to such an
extent that students can follow a higher course on Algebraic Geometry or Algebraic Number Theory.
extent that students can follow a higher course on Algebraic Geometry or Algebraic Number Theory.
Examination topics
The methods of this lecture are algebraic in
nature. Henceforth it is expected that students have already attended a course on algebra. Knowledge of Galois Theory is not expected.
nature. Henceforth it is expected that students have already attended a course on algebra. Knowledge of Galois Theory is not expected.
Reading list
Commutative Algebra. N. Bourbaki. Springer Verlag.
Association in the course directory
Last modified: Mo 07.09.2020 15:40
rings , their ideals , and modules
based on such rings; and of fields and their algebras . Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings , rings of algebraic integers , including the ordinary integers *Z*, and p-adic integers . It has turned out that the most important concept is the concept of a module, that is a common generalization of the concepts vector space and left ideal.