Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

260007 VO Advanced Computational Physics (2022S)

6.00 ECTS (4.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 07.03. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 09.03. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 14.03. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 16.03. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 21.03. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 23.03. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 28.03. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 30.03. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 04.04. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 06.04. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 25.04. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 27.04. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 02.05. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 04.05. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 09.05. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 11.05. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 16.05. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 18.05. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 23.05. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 25.05. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 30.05. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 01.06. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 08.06. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 13.06. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 15.06. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Monday 20.06. 13:30 - 15:00 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Wednesday 22.06. 09:00 - 10:30 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien

Information

Aims, contents and method of the course

In one of the major paradigm shifts in physics in the past half century, computational physics, the application of purely computer-based methods to the solution of physical problems, has established itself as an independent "third methodology", in addition to the conventional approaches, experimental and theoretical Physics. Like its sister disciplines, computational physics is a method, rather than a specific subfield of physics, and thus is not limited to any particular area. Applications range from tests of approximate theoretical methods (by providing numerically exact results for well-chosen model systems) to replacement/extension of laboratory experiments to extreme space and time scales or physical conditions. Thanks to the continuous increase in computer power, more and more sophisticated physical models may be simulated in detail and their properties investigated at will.
This course, which aims at depth rather than breadth, offers an introduction to the most important many-body simulation techniques in statistical mechanics and will cover the following topics:
- Monte Carlo simulations
- Molecular Dynamics
- Long-range interactions
" Entropy and free energy
- Rare events
Since the emphasis of the course is on providing practical knowledge, all algorithms are explained in detail and illustrated by sample programs, so that students may readily extend them or write their own code if they wish to. For the same reason, the accompanying problem class is considered an integral part of the course.
Prerequisites: Computational Physics I or equivalent, fundamentals of Statistical Mechanics and Quantum Mechanics, good programming skills.

Assessment and permitted materials

This exam will be conducted as a standard written exam in a lecture hall to be anounced. In particular, any auxiliary tools like books, lecture notes or electronic devices are not permitted. You are kindly asked to appear at the lecture hall 15 minuted before the begin of the exam to allow all participants to occupy their places in an orderly manner to guarantee possible Covid safety rules. The exam will be conducted during a total time of 90 minutes. The remaining time is reserved to allow leaving the lecture hall in an orderly manner.

Minimum requirements and assessment criteria

At the exam, at least 50% of the possible points need to be obtained for a positive grade. The grading is done according to the following scheme:0 -50%: nicht genügend (5)50 - 63% genügend (4)63 - 77%: befriedigend (3)77 - 90%: gut (2)90 - 100%: sehr gut (1)

Examination topics

Exam topics include all topics of the lecture notes that are treated in the lecture. The lecture notes are available on the Moodle page of the course.

Reading list

M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1978.
D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 2002.
D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, 1995.
M. E. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999.
M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, 2010.
David P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 2009.

Association in the course directory

M-CORE 1, M-VAF A 1, UF MA PHYS 01a, UF MA PHYS 01b

Last modified: We 18.01.2023 17:49