Warning! The directory is not yet complete and will be amended until the beginning of the term.
260028 VO Electronic Structure of Materials (2016S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.03. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien (Kickoff Class)
- Wednesday 09.03. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 16.03. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 06.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 13.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 20.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 27.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 04.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 11.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 18.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 25.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 01.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 08.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 15.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 22.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination, possibly accompanied/replaced by a personal project consisting in the numerical solution of a problem.
Minimum requirements and assessment criteria
Computational quantum-mechanical modeling of materials. The lecture will give students the theoretical background and the practical experience to model, understand, and predict the properties of materials.
Examination topics
Slides - Blackboard - 1practical' computer examples
Reading list
Computational Physics, J.M. Thijssen (Cambridge University Press, 2007)
Electronic Structure: Basic Theory and Practical Methods, R. Martin (Cambridge University Press, 2004
Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge2003.
Electronic Structure: Basic Theory and Practical Methods, R. Martin (Cambridge University Press, 2004
Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge2003.
Association in the course directory
MF 1, MF 9, MaG 7, MaG 8, MaG 23, MaG 24, MaV 1, MaV 6
Last modified: Mo 07.09.2020 15:40
the numerical solution of the many-electron Schrödinger equation and
provides an overview of electronic structure theory as applied to materials.
Specific topics include: Variational method and the many body problem;
Atoms; Wave function methods (Hartree-Fock and beyond); Density-functional theory; Band structure of crystal (Tight-binding method, full potential methods,
pseudopotentials); magnetism (Heisenberg Hamiltonian); selected examples of
properties of materials predicted from electronic structure schemes.
The applicability of the various computational tools to diverse problems will
be discussed (also through computational experiments involving the implementation of model HF and DFT programs). This course requires some basic knowledge of
quantum mechanics and solid states physics.