Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

260034 VO Introduction to vector and tensor calculus I (2011W)

3.00 ECTS (2.00 SWS), SPL 26 - Physik

Vorbesprechung: Mo 03.10.2011, 11.00 Lise-Meitner-Hörsaal, Strudlhofgasse 4, 1. Stk., 1090 Wien.

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 04.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 11.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 18.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 25.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 08.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 15.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 22.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 29.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 06.12. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 13.12. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 10.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 17.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 24.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Tuesday 31.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Information

Aims, contents and method of the course

Definition of vector space, vector components and their transformation. Definition of tensors and tensor algebra, tensor of elastic tensions and inertial tensor. Pseudo tensors, axial vectors and vector product, angular velocity, angular momentum and magnetic induction. Vector fields, flux and circulation, definition of vector differential operators and their geometrical and physical interpretation, vector fields in hydrodynamics and electrodynamics.

Assessment and permitted materials

Oral examintion

Minimum requirements and assessment criteria

Understanding of vector and tensor calculus and applications to various problems.

Examination topics

Corresponding to the type of the course.

Reading list


Association in the course directory

MaE, PD fW, LA-Ph71 fW

Last modified: Mo 07.09.2020 15:40