Universität Wien

260034 VU Lie groups and Lie algebras for physicists (2019S)

5.00 ECTS (3.00 SWS), SPL 26 - Physik
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 40 participants
Language: German, English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.03. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien (Kickoff Class)
  • Wednesday 06.03. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 11.03. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 13.03. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 18.03. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 20.03. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 25.03. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 27.03. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 01.04. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 03.04. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 08.04. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 10.04. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 29.04. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 06.05. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 08.05. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 13.05. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 15.05. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 20.05. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 22.05. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 27.05. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 29.05. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 03.06. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 05.06. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 12.06. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 17.06. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 19.06. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Monday 24.06. 10:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 26.06. 10:00 - 11:15 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien

Information

Aims, contents and method of the course

This lecture will provide an introduction to the theory and applications of Lie groups and Lie algebras, which play an important role in theoretical physics. Topics include:

* Rotation groups and -algebras: SO(3), SU(2), Lorentz group and Lorentz algebra
* The relation between Lie groups and Lie algebras
* The structure of (semi)simple Lie algebras (classification, Dynkin-diagrams, etc.)
* Representation theory
* Selected applications, in particular in the context of elementary particle physics

Assessment and permitted materials

There will be a number of homework problems during the semester, which must be uploaded online (via Moodle), and discussed and solved at the blackboard by the students.
There will be a written test in the last unit.

Minimum requirements and assessment criteria

Each correctly solved probems provides up to 3 points.
The grade will be based on the points acquired from the homework problems as well as the written test.
Details will be provided in Moodle

requirements: solid background in analysis and linear algebra.
Quantum mechanics is highly recommended, some previous exposure to differential geometry (e.g. courses on relativity) is helpful but not required.

Examination topics

Lecture notes

Reading list

lecture notes will be provided

Association in the course directory

MaG 5, MaG 15, M-VAF A 2, M-VAF B

Last modified: Mo 07.09.2020 15:40