Warning! The directory is not yet complete and will be amended until the beginning of the term.
260034 VU Lie groups and Lie algebras for physicists (2023S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 01.02.2023 08:00 to Th 23.02.2023 07:00
- Deregistration possible until Fr 31.03.2023 23:59
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
the VUE starts on the 06/03. Students on the waiting list may participate if they are
present on this date.
- Monday 06.03. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 08.03. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Wednesday 15.03. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 20.03. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 22.03. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 27.03. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 29.03. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 17.04. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 19.04. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 24.04. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 26.04. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Wednesday 03.05. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 08.05. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 10.05. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 15.05. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 17.05. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 22.05. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 24.05. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Wednesday 31.05. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 05.06. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 07.06. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 12.06. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 14.06. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Monday 19.06. 15:15 - 16:15 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Wednesday 21.06. 09:30 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
There will be a number of homework problems during the semester, which must be uploaded online (via Moodle), and discussed and solved at the blackboard by the students.
There will be a written test in the last unit.
There will be a written test in the last unit.
Minimum requirements and assessment criteria
Each correctly solved probems provides up to 3 points.
The grade will be based on the points acquired from the homework problems (overall weight 50%) as well as the written test (overall weight 50%).
grading scale:
100,00 % 87,00 % 1
86,99 % 75,00 % 2
74,99 % 63,00 % 3
62,99 % 50,00 % 4
49,99 % 0,00 % 5requirements: solid background in analysis and linear algebra.
Quantum mechanics is highly recommended, some previous exposure to differential geometry (e.g. courses on relativity) is helpful but not required.
The grade will be based on the points acquired from the homework problems (overall weight 50%) as well as the written test (overall weight 50%).
grading scale:
100,00 % 87,00 % 1
86,99 % 75,00 % 2
74,99 % 63,00 % 3
62,99 % 50,00 % 4
49,99 % 0,00 % 5requirements: solid background in analysis and linear algebra.
Quantum mechanics is highly recommended, some previous exposure to differential geometry (e.g. courses on relativity) is helpful but not required.
Examination topics
Lecture notes
Reading list
lecture notes
Association in the course directory
M-VAF A 2, M-VAF B
Last modified: Mo 13.11.2023 13:48
* The relation between Lie groups and Lie algebras
* The structure of (semi)simple Lie algebras (classification, Dynkin-diagrams, etc.)
* Representation theory
* Selected applications, in particular in the context of elementary particle physics