Warning! The directory is not yet complete and will be amended until the beginning of the term.
260048 VU Introduction to conformal field theory (2021S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 01.02.2021 08:00 to Mo 22.02.2021 07:00
- Deregistration possible until Fr 26.03.2021 23:59
Details
max. 15 participants
Language: German, English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 11.03. 15:00 - 17:30 Digital
- Thursday 18.03. 15:00 - 17:30 Digital
- Thursday 25.03. 15:00 - 17:30 Digital
- Thursday 15.04. 15:00 - 17:30 Digital
- Thursday 22.04. 15:00 - 17:30 Digital
- Thursday 29.04. 15:00 - 17:30 Digital
- Thursday 06.05. 15:00 - 17:30 Digital
- Thursday 20.05. 15:00 - 17:30 Digital
- Thursday 27.05. 15:00 - 17:30 Digital
- Thursday 10.06. 15:00 - 17:30 Digital
- Thursday 17.06. 15:00 - 17:30 Digital
- Thursday 24.06. 15:00 - 17:30 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
Two take-home exams, presentation of one exercise, participation
Minimum requirements and assessment criteria
In total, 80 points can be obtained:
- 32 for each take home exam
- 16 for the presentation and participationGrading key:
- from 70 points: 1
- from 60 points: 2
- from 50 points: 3
- from 40 points: 4
- 32 for each take home exam
- 16 for the presentation and participationGrading key:
- from 70 points: 1
- from 60 points: 2
- from 50 points: 3
- from 40 points: 4
Examination topics
Complete content of the course
Reading list
A. Belavin, A. Polyakov, A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Physics B241 (1984) 333-380
R. Blumenhagen, E. Plauschinn, Introduction to Conformal Field Theory - with applications to String Theory, Springer 2009
P. Di Francesco, P. Matthieu, D. Sénéchal, Conformal field theory, Springer 1997
P. Ginsparg, Applied conformal field theory, Les Houches Summer School 1988, hep-th/9108028
M. Henkel, Conformal invariance and critical phenomena, Springer 1999
K.-H. Rehren, Konforme Quantenfeldtheorie, Vorlesungsskript, ein pdf-File ist auf Rehrens Homepage erhältlich
S. Rychkov, EPFL Lectures on Conformal Field Theory in D>=3 dimensions, arXiv:1601.05000
M. Schottenloher, A mathematical introduction to conformal field theory, Lecture Notes in Physics, Springer 1997
R. Blumenhagen, E. Plauschinn, Introduction to Conformal Field Theory - with applications to String Theory, Springer 2009
P. Di Francesco, P. Matthieu, D. Sénéchal, Conformal field theory, Springer 1997
P. Ginsparg, Applied conformal field theory, Les Houches Summer School 1988, hep-th/9108028
M. Henkel, Conformal invariance and critical phenomena, Springer 1999
K.-H. Rehren, Konforme Quantenfeldtheorie, Vorlesungsskript, ein pdf-File ist auf Rehrens Homepage erhältlich
S. Rychkov, EPFL Lectures on Conformal Field Theory in D>=3 dimensions, arXiv:1601.05000
M. Schottenloher, A mathematical introduction to conformal field theory, Lecture Notes in Physics, Springer 1997
Association in the course directory
M-VAF A 2, M-VAF B
Last modified: Fr 12.05.2023 00:21
1. Introduction: Why study conformal field theories?
2. Conformal transformations
3. Free massless fields
4. General properties of conformal field theories
5. Correlation functions
6. Operator algebra and conformal bootstrap
7. Two-dimensional conformal field theories
8. Minimal models
9. Modular invariance and black hole entropy