Warning! The directory is not yet complete and will be amended until the beginning of the term.
260061 PUE Introduction to Theory of Relativity (2019W)
Continuous assessment of course work
Labels
Summary
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 02.09.2019 08:00 to We 25.09.2019 23:59
- Deregistration possible until Th 31.10.2019 23:59
Registration information is available for each group.
Groups
Group 1
max. 25 participants
Language: English
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 10.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien (Kickoff Class)
- Thursday 17.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 24.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 31.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 07.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 14.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 21.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 28.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 05.12. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 12.12. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 09.01. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 16.01. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 23.01. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Group 2
max. 25 participants
Language: English
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 10.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien (Kickoff Class)
- Wednesday 16.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 23.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 30.10. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 06.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 13.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 20.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 27.11. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 04.12. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 11.12. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 08.01. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 15.01. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Wednesday 22.01. 16:45 - 18:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Aims, contents and method of the course
Lorentz transformations, geometry of Minkowski spacetime, relativistic effects, relativistic kinematics, relativistic field theory, basics of general relativity.
Assessment and permitted materials
We expect to cover three or four problems in each class, with the problems to be covered announced about one week before the relevant class. Students are required to prepare a written solution to one of the exercises each week. The solutions will be collected on a random basis, and graded from 0 to 10 points, the final grade being the average of the individual grades.During the tutorials, students will be called to the blackboard on a random basis. The accuracy and completeness of the solution, the understanding of the subject, as well as the clarity and intelligibility of the presentation will be assessed.Grading:
One can obtain up to 10 points for written solutions and up to 10 points for the blackboard presentations.The final result being translated to marks as follows:
<= 9.5 points: 5
10 − 11.5 points: 4
12 − 13.5 points: 3
14 − 16 points: 2
16.5 − 20 points: 1The PUE is an exam-intensive course and serves the purpose of preparation for the module exam.Registration for the PUE is not mandatory, but is highly recommended. Note that participation becomes compulsory after registering for the PUE. A deregistration from this course is possible until Thu 31.10.2019 23:59. All students still registered after this deadline will obtain a grade according to the assessment criteria of the PUE.The grade of the PUE is NOT included in the grade of the module exam.The performance for the modul (VO+PUE) is determined by the outcome of the (final) examination of the module.
One can obtain up to 10 points for written solutions and up to 10 points for the blackboard presentations.The final result being translated to marks as follows:
<= 9.5 points: 5
10 − 11.5 points: 4
12 − 13.5 points: 3
14 − 16 points: 2
16.5 − 20 points: 1The PUE is an exam-intensive course and serves the purpose of preparation for the module exam.Registration for the PUE is not mandatory, but is highly recommended. Note that participation becomes compulsory after registering for the PUE. A deregistration from this course is possible until Thu 31.10.2019 23:59. All students still registered after this deadline will obtain a grade according to the assessment criteria of the PUE.The grade of the PUE is NOT included in the grade of the module exam.The performance for the modul (VO+PUE) is determined by the outcome of the (final) examination of the module.
Minimum requirements and assessment criteria
Acquiring an understanding of special relativity and of the basic elements of general relativity.
Examination topics
Reading list
J.M. Heinzle, Introduction to Relativity and Cosmology I, 2010
R. Beig, RT1, 2010
H. Rumpf, Relativitätstheorie und Kosmologie I, 2015
N.M.J. Woodhouse, Special Relativity, Springer, 2003, also N.M.J. Woodhouse, Spezielle Relativitätstheorie, Springer, 2016
R. Meinel, Spezielle und allgemeine Relativitätstheorie für Bachelorstudenten, Springer, 2016cf http://gravity.univie.ac.at/studies/relativitaetstheorie-und-kosmologie-i/
R. Beig, RT1, 2010
H. Rumpf, Relativitätstheorie und Kosmologie I, 2015
N.M.J. Woodhouse, Special Relativity, Springer, 2003, also N.M.J. Woodhouse, Spezielle Relativitätstheorie, Springer, 2016
R. Meinel, Spezielle und allgemeine Relativitätstheorie für Bachelorstudenten, Springer, 2016cf http://gravity.univie.ac.at/studies/relativitaetstheorie-und-kosmologie-i/
Association in the course directory
WPF 7, MF 7, UF MA PHYS 01a, UF MA PHYS 01b
Last modified: Sa 22.10.2022 00:27