Warning! The directory is not yet complete and will be amended until the beginning of the term.
260089 VO Advanced Module Computational Physics (2008S)
Deterministic chaos II: Chaos and irreversibility in the natural sciences
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.03. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 11.03. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 18.03. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 25.03. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 01.04. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 08.04. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 15.04. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 22.04. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 29.04. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 06.05. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 13.05. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 20.05. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 27.05. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 03.06. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 10.06. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 17.06. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 24.06. 15:00 - 17:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Aims, contents and method of the course
This is the second part of a two-semester course on deterministic chaos and its application to statistical physics and, in particular, to processes far from thermodynamic equilibrium. Nonlinear-system theory provides an explanation for the Second Law of thermodynamics and for the irreversibility of macroscopic processes in spite of the time reversibility of the underlying equations of motion. It allows to derive new relations connecting the stability of the phase-space trajectory with the properties of the transport processes involved. Chaos in Hamiltonian systems is also treated, where the examples range from the simple pendulum to the stability of the solar system.The topics include: Renyi dimensions of fractal attractors singularity spectrum of multifractals and the thermodynamic formalism Lyapunov instability mechanics revisited: nonholonomic constraints and computer thermostats Gauss and Nose-Hoover mechanics systems far from thermodynamic equilibrium transport theory generalized Liouville equation linear response theory nonequilibrium molecular dynamics (NEMD) and nonequilibrium stationary states (NESS), pressure tensor and virial theorem conductivity, viscosity, and diffusion microphysics - macrophysics and the Second Law resolution of Loschmidt's paradox attractors and repellors for ergodic and stationary nonequilibrium flows Hamiltonian flows Poincare integral invariants KAM theorem the rings of Saturn stability of the solar system.The course is complemented by computer exercises designed to illuminate various topics.
Assessment and permitted materials
Minimum requirements and assessment criteria
Understanding of the course.
Examination topics
Corresponding to the type of the course.
Reading list
Wird am Beginn der Lehrveranstaltung vereinbart.
Association in the course directory
PD250
Last modified: Mo 07.09.2020 15:41