Warning! The directory is not yet complete and will be amended until the beginning of the term.
260091 VO Scientific Computing (2024S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Lecturers
- Georg Kresse
- Alessandro Coretti
- Magdalena Häupl (Student Tutor)
Classes (iCal) - next class is marked with N
Lecture start already on the 05.03.2024.
- Tuesday 05.03. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 19.03. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 09.04. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 16.04. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 23.04. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 30.04. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 07.05. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 14.05. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 21.05. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 28.05. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 04.06. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 11.06. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Tuesday 18.06. 10:45 - 12:15 Josef-Stefan-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam; no written materials are allowed. Exam time is approximately 1 hour and 30 minutes. Due to the Covid-19 pandemic, a change in the mode of testing (on-site or digital) may be required during the semester. If necessary, information on the performance review mode will be updated.
Minimum requirements and assessment criteria
One can achieve typically 40-48 points in the written exam. A minimum of half the points is required for a positive grade. Specifically
Grade 1 100.00% - 87.00%
Grade 2 86.99% - 75.00%
Grade 3 74.99% - 63.00%
Grade 4 62.99% - 50.00%
Failed 49.99% - 0.00%
Grade 1 100.00% - 87.00%
Grade 2 86.99% - 75.00%
Grade 3 74.99% - 63.00%
Grade 4 62.99% - 50.00%
Failed 49.99% - 0.00%
Examination topics
The material taught in the lecture and during the exercises according to the lecture notes as well as presentation slides and application of this knowledge to simple problems.
Reading list
1) Skriptum und Vortragsfolien @ E-Learning platform Moodle
2) G. Bärwolff, "Numerik für Ingenieure, Physiker und Informatiker", 2016 Springer-Verlag 2nd ed.; DOI 10.1007/978-3-662-48016-8_1 (weiterführend zu allen Kapiteln der Vorlesung mit Beispielen und Programmen, als E-book via u:access verfügbar)
3) A. Quarteroni, F. Saleri und P. Gervasio, "Scientific Computing with MATLAB and Octave", 2010 Springer-Verlag 3rd ed.; ISBN 978-3-642-12429-7
4) P. Deuflhard und A. Hohmann, "Numerical Analysis in Modern Scientific Computing An Introduction", 2003 Springer-Verlag 2nd ed.; ISBN 978-0-387-95410-3
(mathematisch elegant, tiefgehender, enthält kein Material über Differentialgleichungen)
5) P. Deuflhard und A. Hohmann, "Numerische Mathematik 1: Eine algorithmisch orientierte Einführung", 2008 Walter de Gruyter 4th ed.; (1. Band der umfassenden Serie zu Numerischer Mathematik in deutscher Sprache, keine Differentialgleichungen, als E-book via u:access verfügbar)
6) P. Deuflhard und F. Bornemann, "Numerische Mathematik 2: Gewöhnliche Differentialgleichungen", 2013 Walter de Gruyter 4th ed.; (2. Band der umfassenden Serie zu Numerischer Mathematik in deutscher Sprache, als E-book via u:access verfügbar)
7) P. Deuflhard und M. Weiser, "Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen", 2011 Walter de Gruyter; (3. Band der umfassenden Serie zu Numerischer Mathematik in deutscher Sprache, als E-book via u:access verfügbar)
2) G. Bärwolff, "Numerik für Ingenieure, Physiker und Informatiker", 2016 Springer-Verlag 2nd ed.; DOI 10.1007/978-3-662-48016-8_1 (weiterführend zu allen Kapiteln der Vorlesung mit Beispielen und Programmen, als E-book via u:access verfügbar)
3) A. Quarteroni, F. Saleri und P. Gervasio, "Scientific Computing with MATLAB and Octave", 2010 Springer-Verlag 3rd ed.; ISBN 978-3-642-12429-7
4) P. Deuflhard und A. Hohmann, "Numerical Analysis in Modern Scientific Computing An Introduction", 2003 Springer-Verlag 2nd ed.; ISBN 978-0-387-95410-3
(mathematisch elegant, tiefgehender, enthält kein Material über Differentialgleichungen)
5) P. Deuflhard und A. Hohmann, "Numerische Mathematik 1: Eine algorithmisch orientierte Einführung", 2008 Walter de Gruyter 4th ed.; (1. Band der umfassenden Serie zu Numerischer Mathematik in deutscher Sprache, keine Differentialgleichungen, als E-book via u:access verfügbar)
6) P. Deuflhard und F. Bornemann, "Numerische Mathematik 2: Gewöhnliche Differentialgleichungen", 2013 Walter de Gruyter 4th ed.; (2. Band der umfassenden Serie zu Numerischer Mathematik in deutscher Sprache, als E-book via u:access verfügbar)
7) P. Deuflhard und M. Weiser, "Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen", 2011 Walter de Gruyter; (3. Band der umfassenden Serie zu Numerischer Mathematik in deutscher Sprache, als E-book via u:access verfügbar)
Association in the course directory
SCICOM, UF MA PHYS 01a, UF MA PHYS 01b
Last modified: Tu 27.02.2024 12:06
The students acquire methods for the numerical analysis and the solution of problems in physics.
In the course of the lecture, the following topics will be discussed using simple numerical algorithms: Linear Systems of Equations; Interpolation; Numerical Differentiation; Numerical Integration; Solution of Nonlinear Equations; Fitting; Eigenvalueproblems; Ordinary and Partial Differential Equations. In the concomitant exercises these algorithms will be applied to examples, implemented and visualized.