Warning! The directory is not yet complete and will be amended until the beginning of the term.
260183 VO Tensors, Spinors, Twistors and all that (2014W)
Labels
Details
max. 15 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
Ersttermin ist Vorbesprechung und beginn der Vorlesung!
- Monday 06.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 07.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 13.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 14.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 20.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 21.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 27.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 28.10. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 03.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 04.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 10.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 11.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 17.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 18.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 24.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 25.11. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 01.12. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 02.12. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 09.12. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 15.12. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 16.12. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 12.01. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 13.01. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 19.01. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 20.01. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Monday 26.01. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
- Tuesday 27.01. 17:15 - 18:00 Seminarraum Physik Sensengasse 8 EG
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
To deepen and broaden the knowledge about tensors and spinors (higher dimensions).
Examination topics
Standard lecture course
Reading list
Cartan 1966; Penrose&Rindler 1985/86
Association in the course directory
MaV 4
Last modified: Mo 07.09.2020 15:41
Tensors for the (pseudo)orthogonal groups
2-component spinors for the Lorentz group
Clifford-Dirac algebra and spinors in n dimensions
Chiral (=Weyl=semi-=half-)spinors, Dirac-, Pauli-, bi- (=Cartan) spinors
Invariant bi- and sesquilinear forms, invariant conjugations, Majorana spinors
Relation between spinors and tensors; pure spinors
Twistors and the conformal group of Minkowski space
SO(8), parallelisms of the 7-sphere, triality