260183 VO Tensors, Spinors, Twistors and all that (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 08.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien (Kickoff Class)
- Monday 15.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 22.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 29.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 05.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 12.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 19.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 26.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 03.12. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 10.12. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 07.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 14.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 21.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
- Monday 28.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
deepened and broadened knowledge about tensors and spinors (higher dimensions).
Examination topics
Basic definitions and theorems and examples from physics
Reading list
Cartan 1966; Penrose&Rindler 1985/86
Association in the course directory
MaV 4, M-VAF A 2, M-VAF B
Last modified: Mo 07.09.2020 15:41
Tensors and invariants for the (pseudo)orthogonal groups
2-component spinors for the Lorentz group
Clifford-Dirac algebra and spinors in n dimensions
Chiral (=Weyl=semi-=half-)spinors, Dirac-, Pauli-, bi- (=Cartan) spinors
Invariant bi- and sesquilinear forms, invariant conjugations, Majorana spinors
Relation between spinors and tensors; pure spinors
Twistors and the conformal group of Minkowski space
SO(8), parallelisms of the 7-sphere, trialitystandard lecture course